BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 26712533)

  • 1. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway.
    Sakuragi H; Morisaka H; Kuroda K; Ueda M
    Biosci Biotechnol Biochem; 2015; 79(2):314-20. PubMed ID: 25348391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers.
    Generoso WC; Schadeweg V; Oreb M; Boles E
    Curr Opin Biotechnol; 2015 Jun; 33():1-7. PubMed ID: 25286420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges.
    Azambuja SPH; Goldbeck R
    World J Microbiol Biotechnol; 2020 Mar; 36(3):48. PubMed ID: 32152786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced biofuel production by the yeast Saccharomyces cerevisiae.
    Buijs NA; Siewers V; Nielsen J
    Curr Opin Chem Biol; 2013 Jun; 17(3):480-8. PubMed ID: 23628723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biobutanol from cheese whey.
    Becerra M; Cerdán ME; González-Siso MI
    Microb Cell Fact; 2015 Mar; 14():27. PubMed ID: 25889728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae.
    Ida K; Ishii J; Matsuda F; Kondo T; Kondo A
    Microb Cell Fact; 2015 Apr; 14():62. PubMed ID: 25925006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain.
    Yuan Y; Zhao H
    Biotechnol Bioeng; 2013 Nov; 110(11):2874-81. PubMed ID: 23616289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae.
    Shi S; Si T; Liu Z; Zhang H; Ang EL; Zhao H
    Sci Rep; 2016 May; 6():25675. PubMed ID: 27161023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production.
    Yuan J; Chen X; Mishra P; Ching CB
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):465-474. PubMed ID: 27847988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of metabolite profiles of Saccharomyces cerevisiae strains suitable for butanol production.
    Azambuja SPH; Teixeira GS; Andrietta MGS; Torres-Mayanga PC; Forster-Carneiro T; Rosa CA; Goldbeck R
    FEMS Microbiol Lett; 2019 Jul; 366(13):. PubMed ID: 31350996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism.
    Krivoruchko A; Serrano-Amatriain C; Chen Y; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.
    Krivoruchko A; Siewers V; Nielsen J
    Biotechnol J; 2011 Mar; 6(3):262-76. PubMed ID: 21328545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress and perspectives on improving butanol tolerance.
    Liu S; Qureshi N; Hughes SR
    World J Microbiol Biotechnol; 2017 Mar; 33(3):51. PubMed ID: 28190182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock.
    Su H; Jiang J; Lu Q; Zhao Z; Xie T; Zhao H; Wang M
    Microb Cell Fact; 2015 Feb; 14():16. PubMed ID: 25889648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass.
    Huang H; Liu H; Gan YR
    Biotechnol Adv; 2010; 28(5):651-7. PubMed ID: 20580810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges.
    Abbott DA; Zelle RM; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 Dec; 9(8):1123-36. PubMed ID: 19566685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.