BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 26712533)

  • 21. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance.
    Matsuda F; Ishii J; Kondo T; Ida K; Tezuka H; Kondo A
    Microb Cell Fact; 2013 Dec; 12():119. PubMed ID: 24305546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.
    Marques WL; Raghavendran V; Stambuk BU; Gombert AK
    FEMS Yeast Res; 2016 Feb; 16(1):fov107. PubMed ID: 26658003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing Yeast Alcoholic Fermentations.
    Walker GM; Walker RSK
    Adv Appl Microbiol; 2018; 105():87-129. PubMed ID: 30342724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds.
    Yuan J; Ching CB
    ACS Synth Biol; 2015 Jan; 4(1):23-31. PubMed ID: 24847678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae.
    Si T; Luo Y; Xiao H; Zhao H
    Metab Eng; 2014 Mar; 22():60-8. PubMed ID: 24412568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospective and development of butanol as an advanced biofuel.
    Xue C; Zhao XQ; Liu CG; Chen LJ; Bai FW
    Biotechnol Adv; 2013 Dec; 31(8):1575-84. PubMed ID: 23993946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frontiers in microbial 1-butanol and isobutanol production.
    Chen CT; Liao JC
    FEMS Microbiol Lett; 2016 Mar; 363(5):fnw020. PubMed ID: 26832641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance.
    Swidah R; Wang H; Reid PJ; Ahmed HZ; Pisanelli AM; Persaud KC; Grant CM; Ashe MP
    Biotechnol Biofuels; 2015; 8():97. PubMed ID: 26175798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in synthetic biology for engineering isoprenoid production in yeast.
    Vickers CE; Williams TC; Peng B; Cherry J
    Curr Opin Chem Biol; 2017 Oct; 40():47-56. PubMed ID: 28623722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis.
    Hammer SK; Avalos JL
    Metab Eng; 2017 Nov; 44():302-312. PubMed ID: 29037781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advancements in various steps of ethanol, butanol, and isobutanol productions from woody materials.
    Fatehi P
    Biotechnol Prog; 2013; 29(2):297-310. PubMed ID: 23297056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.
    Hong KK; Nielsen J
    Cell Mol Life Sci; 2012 Aug; 69(16):2671-90. PubMed ID: 22388689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial engineering for the production of isobutanol: current status and future directions.
    Lakshmi NM; Binod P; Sindhu R; Awasthi MK; Pandey A
    Bioengineered; 2021 Dec; 12(2):12308-12321. PubMed ID: 34927549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Alternative type of fuel--biobutanol].
    Tigunova EA; Shul'ga SM; Blium IaB
    Tsitol Genet; 2013; 47(6):51-71. PubMed ID: 24437198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.
    Brat D; Boles E
    FEMS Yeast Res; 2013 Mar; 13(2):241-4. PubMed ID: 23279585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY; Kang CD; Lee SH; Park YK; Cho KM
    Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].
    Liu W; Fu J; Zhang B; Chen T
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1161-72. PubMed ID: 24364352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae.
    Su Y; Shao W; Zhang A; Zhang W
    FEMS Yeast Res; 2021 Mar; 21(2):. PubMed ID: 33620449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.