BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26712544)

  • 1. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph.
    Harrold ZR; Skidmore ML; Hamilton TL; Desch L; Amada K; van Gelder W; Glover K; Roden EE; Boyd ES
    Appl Environ Microbiol; 2015 Dec; 82(5):1486-95. PubMed ID: 26712544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining thiosulfate-driven autotrophic denitrification through respirometry.
    Mora M; Guisasola A; Gamisans X; Gabriel D
    Chemosphere; 2014 Oct; 113():1-8. PubMed ID: 25065782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemolithotrophic primary production in a subglacial ecosystem.
    Boyd ES; Hamilton TL; Havig JR; Skidmore ML; Shock EL
    Appl Environ Microbiol; 2014 Oct; 80(19):6146-53. PubMed ID: 25085483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem.
    Boyd ES; Lange RK; Mitchell AC; Havig JR; Hamilton TL; Lafrenière MJ; Shock EL; Peters JW; Skidmore M
    Appl Environ Microbiol; 2011 Jul; 77(14):4778-87. PubMed ID: 21622799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions.
    Beller HR; Letain TE; Chakicherla A; Kane SR; Legler TC; Coleman MA
    J Bacteriol; 2006 Oct; 188(19):7005-15. PubMed ID: 16980503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans.
    Bosch J; Lee KY; Jordan G; Kim KW; Meckenstock RU
    Environ Sci Technol; 2012 Feb; 46(4):2095-101. PubMed ID: 22142180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica.
    Sattley WM; Madigan MT
    Appl Environ Microbiol; 2006 Aug; 72(8):5562-8. PubMed ID: 16885310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD.
    Sorokin DY; Kuenen JG; Jetten MS
    Arch Microbiol; 2001 Feb; 175(2):94-101. PubMed ID: 11285746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers.
    Foght J; Aislabie J; Turner S; Brown CE; Ryburn J; Saul DJ; Lawson W
    Microb Ecol; 2004 May; 47(4):329-40. PubMed ID: 14994176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments.
    Kellermann C; Griebler C
    Int J Syst Evol Microbiol; 2009 Mar; 59(Pt 3):583-8. PubMed ID: 19244446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrite oxidation by Thiobacillus ferrooxidans with special reference to the sulphur moiety of the mineral.
    Arkesteyn GJ
    Antonie Van Leeuwenhoek; 1979; 45(3):423-35. PubMed ID: 45294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus dentrificans.
    Hoor AT
    Antonie Van Leeuwenhoek; 1976; 42(4):483-92. PubMed ID: 1087862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rates and potential mechanism of anaerobic nitrate-dependent microbial pyrite oxidation.
    Bosch J; Meckenstock RU
    Biochem Soc Trans; 2012 Dec; 40(6):1280-3. PubMed ID: 23176468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete denitrification in coculture of obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria from a hypersaline soda lake.
    Sorokin DY; Antipov AN; Kuenen JG
    Arch Microbiol; 2003 Aug; 180(2):127-33. PubMed ID: 12827218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
    Percak-Dennett E; He S; Converse B; Konishi H; Xu H; Corcoran A; Noguera D; Chan C; Bhattacharyya A; Borch T; Boyd E; Roden EE
    Geobiology; 2017 Sep; 15(5):690-703. PubMed ID: 28452176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria.
    Stubner S; Wind T; Conrad R
    Syst Appl Microbiol; 1998 Dec; 21(4):569-78. PubMed ID: 9924825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.
    Perreault NN; Greer CW; Andersen DT; Tille S; Lacrampe-Couloume G; Lollar BS; Whyte LG
    Appl Environ Microbiol; 2008 Nov; 74(22):6898-907. PubMed ID: 18805995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria.
    Petri R; Podgorsek L; Imhoff JF
    FEMS Microbiol Lett; 2001 Apr; 197(2):171-8. PubMed ID: 11313131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes.
    Skidmore M; Anderson SP; Sharp M; Foght J; Lanoil BD
    Appl Environ Microbiol; 2005 Nov; 71(11):6986-97. PubMed ID: 16269734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge.
    Karikari-Yeboah O; Skinner W; Addai-Mensah J
    Environ Monit Assess; 2019 Mar; 191(4):216. PubMed ID: 30868246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.