These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1056 related articles for article (PubMed ID: 26712624)
1. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization. Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624 [TBL] [Abstract][Full Text] [Related]
2. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195 [TBL] [Abstract][Full Text] [Related]
3. Physiological and Ecological Aspects of Chlorella sorokiniana (Trebouxiophyceae) Under Photoautotrophic and Mixotrophic Conditions. Marchello AE; Dos Santos AC; Lombardi AT; de Souza CWO; Montanhim GC Microb Ecol; 2018 Oct; 76(3):791-800. PubMed ID: 29520451 [TBL] [Abstract][Full Text] [Related]
4. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana. Sun Z; Chen YF; Du J Plant Biotechnol J; 2016 Feb; 14(2):557-66. PubMed ID: 25973988 [TBL] [Abstract][Full Text] [Related]
5. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777 [TBL] [Abstract][Full Text] [Related]
6. Comparison of biomass and lipid production under ambient carbon dioxide vigorous aeration and 3% carbon dioxide condition among the lead candidate Chlorella strains screened by various photobioreactor scales. Kobayashi N; Barnes A; Jensen T; Noel E; Andlay G; Rosenberg JN; Betenbaugh MJ; Guarnieri MT; Oyler GA Bioresour Technol; 2015 Dec; 198():246-55. PubMed ID: 26398668 [TBL] [Abstract][Full Text] [Related]
7. [Optimization of photoautotrophic lipid production of Chlorella ellipsoidea seeded with heterotrophic cells]. Wang J; Li Y; Wang W; Huang J; Shen G; Li S; Pan R Sheng Wu Gong Cheng Xue Bao; 2014 Oct; 30(10):1639-43. PubMed ID: 25726589 [TBL] [Abstract][Full Text] [Related]
8. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Wang Y; Rischer H; Eriksen NT; Wiebe MG Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064 [TBL] [Abstract][Full Text] [Related]
9. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Heredia-Arroyo T; Wei W; Hu B Appl Biochem Biotechnol; 2010 Nov; 162(7):1978-95. PubMed ID: 20443076 [TBL] [Abstract][Full Text] [Related]
10. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana. Rosenberg JN; Kobayashi N; Barnes A; Noel EA; Betenbaugh MJ; Oyler GA PLoS One; 2014; 9(4):e92460. PubMed ID: 24699196 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed. Han F; Huang J; Li Y; Wang W; Wang J; Fan J; Shen G Bioresour Technol; 2012 Aug; 118():431-7. PubMed ID: 22717560 [TBL] [Abstract][Full Text] [Related]
12. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. Ratha SK; Babu S; Renuka N; Prasanna R; Prasad RB; Saxena AK J Basic Microbiol; 2013 May; 53(5):440-50. PubMed ID: 22736510 [TBL] [Abstract][Full Text] [Related]
13. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions. Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592 [TBL] [Abstract][Full Text] [Related]
14. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella. Fan J; Xu H; Luo Y; Wan M; Huang J; Wang W; Li Y Appl Microbiol Biotechnol; 2015 Mar; 99(5):2451-62. PubMed ID: 25620370 [TBL] [Abstract][Full Text] [Related]
15. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements. Chen CY; Chang HY Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521 [TBL] [Abstract][Full Text] [Related]
16. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Kim S; Park JE; Cho YB; Hwang SJ Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820 [TBL] [Abstract][Full Text] [Related]
17. [Effects of glucose on photosynthesis and growth of Chloralla sp. HN08 cells]. Lang X; Liu Z; Xu M; Xie L; Li R Wei Sheng Wu Xue Bao; 2017 Apr; 57(4):550-9. PubMed ID: 29756738 [TBL] [Abstract][Full Text] [Related]
18. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Miazek K; Remacle C; Richel A; Goffin D Bioresour Technol; 2017 Apr; 230():122-131. PubMed ID: 28187341 [TBL] [Abstract][Full Text] [Related]
19. Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Wan MX; Wang RM; Xia JL; Rosenberg JN; Nie ZY; Kobayashi N; Oyler GA; Betenbaugh MJ Biotechnol Bioeng; 2012 Aug; 109(8):1958-64. PubMed ID: 22354808 [TBL] [Abstract][Full Text] [Related]
20. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses. Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]