These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1056 related articles for article (PubMed ID: 26712624)
21. A kinetic metabolic study of lipid production in Chlorella protothecoides under heterotrophic condition. Ren X; DeschĂȘnes JS; Tremblay R; Peres S; Jolicoeur M Microb Cell Fact; 2019 Jun; 18(1):113. PubMed ID: 31253148 [TBL] [Abstract][Full Text] [Related]
22. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Wan M; Liu P; Xia J; Rosenberg JN; Oyler GA; Betenbaugh MJ; Nie Z; Qiu G Appl Microbiol Biotechnol; 2011 Aug; 91(3):835-44. PubMed ID: 21698379 [TBL] [Abstract][Full Text] [Related]
23. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Lin TS; Wu JY Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671 [TBL] [Abstract][Full Text] [Related]
24. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock. Tanadul OU; VanderGheynst JS; Beckles DM; Powell AL; Labavitch JM Biotechnol Bioeng; 2014 Jul; 111(7):1323-31. PubMed ID: 24474069 [TBL] [Abstract][Full Text] [Related]
25. Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Fei Q; Fu R; Shang L; Brigham CJ; Chang HN Bioprocess Biosyst Eng; 2015 Apr; 38(4):691-700. PubMed ID: 25332127 [TBL] [Abstract][Full Text] [Related]
26. Double CO(2) fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Xiong W; Gao C; Yan D; Wu C; Wu Q Bioresour Technol; 2010 Apr; 101(7):2287-93. PubMed ID: 19963369 [TBL] [Abstract][Full Text] [Related]
27. Use of fermentative metabolites for heterotrophic microalgae growth: Yields and kinetics. Turon V; Baroukh C; Trably E; Latrille E; Fouilland E; Steyer JP Bioresour Technol; 2015 Jan; 175():342-9. PubMed ID: 25459841 [TBL] [Abstract][Full Text] [Related]
28. The regulating mechanisms of CO Li J; Tang X; Pan K; Zhu B; Li Y; Ma X; Zhao Y Chemosphere; 2020 May; 247():125814. PubMed ID: 31927186 [TBL] [Abstract][Full Text] [Related]
29. Effects of Nitrogen Supplementation Status on CO Cho JM; Oh YK; Park WK; Chang YK J Microbiol Biotechnol; 2020 Aug; 30(8):1235-1243. PubMed ID: 32855379 [TBL] [Abstract][Full Text] [Related]
30. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
31. Production of biodiesel by autotrophic Chlorella pyrenoidosa in a sintered disc lab scale bubble column photobioreactor under natural sunlight. Singh NK; Naira VR; Maiti SK Prep Biochem Biotechnol; 2019; 49(3):255-269. PubMed ID: 30794071 [TBL] [Abstract][Full Text] [Related]
32. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Wang XW; Liang JR; Luo CS; Chen CP; Gao YH Bioresour Technol; 2014 Jun; 161():124-30. PubMed ID: 24698739 [TBL] [Abstract][Full Text] [Related]
33. The growth and nutrient removal properties of heterotrophic microalgae Chlorella sorokiniana in simulated wastewater containing volatile fatty acids. Lu T; Su K; Ma G; Jia C; Li J; Zhao Q; Song M; Xu C; Song X Chemosphere; 2024 Jun; 358():142270. PubMed ID: 38719126 [TBL] [Abstract][Full Text] [Related]
34. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Chen YH; Walker TH Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839 [TBL] [Abstract][Full Text] [Related]
35. Integrated lipid production, CO Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683 [TBL] [Abstract][Full Text] [Related]
36. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation. Vyas S; Patel A; Nabil Risse E; Krikigianni E; Rova U; Christakopoulos P; Matsakas L Bioresour Technol; 2022 Sep; 359():127494. PubMed ID: 35724910 [TBL] [Abstract][Full Text] [Related]
37. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition. Kumar V; Muthuraj M; Palabhanvi B; Ghoshal AK; Das D Bioresour Technol; 2014 Oct; 170():115-124. PubMed ID: 25125198 [TBL] [Abstract][Full Text] [Related]
38. A Comparative Analysis Assessing Growth Dynamics of Locally Isolated Chlorella sorokiniana and Chlorella vulgaris for Biomass and Lipid Production with Biodiesel Potential. Usman HM; Kamaroddin MF; Sani MH; Malek NANN; Omoregie AI; Zainal A Bioresour Technol; 2024 Jul; 403():130868. PubMed ID: 38782193 [TBL] [Abstract][Full Text] [Related]
39. Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation. Acedo M; Gonzalez Cena JR; Kiehlbaugh KM; Ogden KL J Vis Exp; 2020 Aug; (162):. PubMed ID: 32865530 [TBL] [Abstract][Full Text] [Related]
40. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation. Wang Y; Chiu SY; Ho SH; Liu Z; Hasunuma T; Chang TT; Chang KF; Chang JS; Ren NQ; Kondo A Biotechnol J; 2016 Aug; 11(8):1072-81. PubMed ID: 27312599 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]