These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26712640)

  • 1. Electric fields can control the transport of water in carbon nanotubes.
    Ritos K; Borg MK; Mottram NJ; Reese JM
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2060):. PubMed ID: 26712640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, dynamics, and morphology of nanostructured water confined between parallel graphene surfaces and in carbon nanotubes by applying magnetic and electric fields.
    Abbaspour M; Akbarzadeh H; Salemi S; Bahmanipour L
    Soft Matter; 2021 Mar; 17(11):3085-3095. PubMed ID: 33596282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of water molecules in carbon nanotubes under electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction.
    Ma M; Grey F; Shen L; Urbakh M; Wu S; Liu JZ; Liu Y; Zheng Q
    Nat Nanotechnol; 2015 Aug; 10(8):692-5. PubMed ID: 26149236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.
    Su J; Guo H
    ACS Nano; 2011 Jan; 5(1):351-9. PubMed ID: 21162530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water distillation modeling by disjoint CNT-based channels under the influence of external electric fields.
    Rizi SH; Lohrasebi A
    J Mol Model; 2020 Aug; 26(9):236. PubMed ID: 32812099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes.
    Huang B; Xia Y; Zhao M; Li F; Liu X; Ji Y; Song C
    J Chem Phys; 2005 Feb; 122(8):84708. PubMed ID: 15836078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis.
    Qi W; Zhao H
    J Chem Phys; 2015 Sep; 143(11):114708. PubMed ID: 26395729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Single-Walled Carbon Nanotube Functionalization on Ion and Water Molecule Transport at the Nanoscale.
    Mejri A; Arroyo N; Herlem G; Palmeri J; Manghi M; Henn F; Picaud F
    Nanomaterials (Basel); 2024 Jan; 14(1):. PubMed ID: 38202572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of ion transport through carbon nanotubes. III. Influence of the nanotube radius, solute concentration, and applied electric fields on the transport properties.
    Beu TA
    J Chem Phys; 2011 Jul; 135(4):044516. PubMed ID: 21806147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating water transport through a charged SWCNT: a molecular dynamics simulation.
    Lu D
    Phys Chem Chem Phys; 2013 Sep; 15(34):14447-57. PubMed ID: 23884179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Interface Ions in the Control of Water Transport through a Carbon Nanotube.
    Zhao Y; Chen J; Huang D; Su J
    Langmuir; 2019 Oct; 35(41):13442-13451. PubMed ID: 31539260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water flow inside various geometric nano-confinement channels.
    Xu X; Zhao Y; Wang J; Zhang N; Wang C; Zhang J; Wei N
    Phys Chem Chem Phys; 2020 Nov; 22(42):24633-24639. PubMed ID: 33095223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AC electric field-induced alignment and long-range assembly of multi-wall carbon nanotubes inside aqueous media.
    Guo Z; Wood JA; Huszarik KL; Yan X; Docoslis A
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4322-32. PubMed ID: 18283810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced wettability of long narrow carbon nanotubes in a double-walled hetero-structure: unraveling the effects of a boron nitride nanotube as the exterior.
    Foroutan M; Naeini VF; Ebrahimi M
    Phys Chem Chem Phys; 2019 Dec; 22(1):391-401. PubMed ID: 31821403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.
    Pugliese P; Conde MM; Rovere M; Gallo P
    J Phys Chem B; 2017 Nov; 121(45):10371-10381. PubMed ID: 29040802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the influence of the external electric fields on water viscosity inside carbon nanotubes.
    Farrokhbin M; Lohrasebi A
    Eur Phys J E Soft Matter; 2023 Oct; 46(10):93. PubMed ID: 37812291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong correlations and Fickian water diffusion in narrow carbon nanotubes.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    J Chem Phys; 2007 Mar; 126(12):124704. PubMed ID: 17411149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of ion transport through carbon nanotubes. II. Structural effects of the nanotube radius, solute concentration, and applied electric fields.
    Beu TA
    J Chem Phys; 2011 Jul; 135(4):044515. PubMed ID: 21806146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration and orientation of diatomic molecules flowing through small carbon nanotubes.
    Cannon J; Kim D; Hess O
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8510-6. PubMed ID: 22400216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.