BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26712858)

  • 1. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.
    Nazarian A; Gezan SA
    J Hered; 2016 Mar; 107(2):153-62. PubMed ID: 26712858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling additive from nonadditive effects using genomic relationship matrices.
    Muñoz PR; Resende MF; Gezan SA; Resende MD; de Los Campos G; Kirst M; Huber D; Peter GF
    Genetics; 2014 Dec; 198(4):1759-68. PubMed ID: 25324160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic prediction of fertility and calving traits in Holstein cattle based on models including epistatic genetic effects.
    Alves K; Brito LF; Schenkel FS
    J Anim Breed Genet; 2023 Sep; 140(5):568-581. PubMed ID: 37254293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GenoMatrix: A Software Package for Pedigree-Based and Genomic Prediction Analyses on Complex Traits.
    Nazarian A; Gezan SA
    J Hered; 2016 Jul; 107(4):372-9. PubMed ID: 27025440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating dominance genetic variances for growth traits in American Angus males using genomic models.
    Garcia-Baccino CA; Lourenco DAL; Miller S; Cantet RJC; Vitezica ZG
    J Anim Sci; 2020 Jan; 98(1):. PubMed ID: 31867623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers.
    Da Y; Wang C; Wang S; Hu G
    PLoS One; 2014; 9(1):e87666. PubMed ID: 24498162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic Model with Correlation Between Additive and Dominance Effects.
    Xiang T; Christensen OF; Vitezica ZG; Legarra A
    Genetics; 2018 Jul; 209(3):711-723. PubMed ID: 29743175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of the Realized Genomic Relationship Matrix to Open-Pollinated White Spruce Family Testing for Disentangling Additive from Nonadditive Genetic Effects.
    Gamal El-Dien O; Ratcliffe B; Klápště J; Porth I; Chen C; El-Kassaby YA
    G3 (Bethesda); 2016 Jan; 6(3):743-53. PubMed ID: 26801647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A predictive assessment of genetic correlations between traits in chickens using markers.
    Momen M; Mehrgardi AA; Sheikhy A; Esmailizadeh A; Fozi MA; Kranis A; Valente BD; Rosa GJ; Gianola D
    Genet Sel Evol; 2017 Feb; 49(1):16. PubMed ID: 28148241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Additive, Dominance, and Imprinting Genetic Variance Using Genomic Data.
    Lopes MS; Bastiaansen JW; Janss L; Knol EF; Bovenhuis H
    G3 (Bethesda); 2015 Oct; 5(12):2629-37. PubMed ID: 26438289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.
    Tiezzi F; Maltecca C
    Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic Prediction of Additive and Non-additive Effects Using Genetic Markers and Pedigrees.
    de Almeida Filho JE; Guimarães JFR; Fonsceca E Silva F; Vilela de Resende MD; Muñoz P; Kirst M; de Resende Júnior MFR
    G3 (Bethesda); 2019 Aug; 9(8):2739-2748. PubMed ID: 31263059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits.
    Aliloo H; Pryce JE; González-Recio O; Cocks BG; Hayes BJ
    Genet Sel Evol; 2016 Feb; 48():8. PubMed ID: 26830030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dominance and epistatic genetic variances for litter size in pigs using genomic models.
    Vitezica ZG; Reverter A; Herring W; Legarra A
    Genet Sel Evol; 2018 Dec; 50(1):71. PubMed ID: 30577727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix.
    Zhang Z; Erbe M; He J; Ober U; Gao N; Zhang H; Simianer H; Li J
    G3 (Bethesda); 2015 Feb; 5(4):615-27. PubMed ID: 25670771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.
    Da Y
    BMC Genet; 2015 Dec; 16():144. PubMed ID: 26678438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic estimation of additive and dominance effects and impact of accounting for dominance on accuracy of genomic evaluation in sheep populations.
    Moghaddar N; van der Werf JHJ
    J Anim Breed Genet; 2017 Dec; 134(6):453-462. PubMed ID: 28833716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers.
    Su G; Christensen OF; Ostersen T; Henryon M; Lund MS
    PLoS One; 2012; 7(9):e45293. PubMed ID: 23028912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.