These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 26712936)
1. Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation. Heindl JE; Hibbing ME; Xu J; Natarajan R; Buechlein AM; Fuqua C J Bacteriol; 2015 Dec; 198(5):816-29. PubMed ID: 26712936 [TBL] [Abstract][Full Text] [Related]
2. Agrobacterium tumefaciens fur has important physiological roles in iron and manganese homeostasis, the oxidative stress response, and full virulence. Kitphati W; Ngok-Ngam P; Suwanmaneerat S; Sukchawalit R; Mongkolsuk S Appl Environ Microbiol; 2007 Aug; 73(15):4760-8. PubMed ID: 17545320 [TBL] [Abstract][Full Text] [Related]
3. Spermidine Inversely Influences Surface Interactions and Planktonic Growth in Agrobacterium tumefaciens. Wang Y; Kim SH; Natarajan R; Heindl JE; Bruger EL; Waters CM; Michael AJ; Fuqua C J Bacteriol; 2016 Oct; 198(19):2682-91. PubMed ID: 27402627 [TBL] [Abstract][Full Text] [Related]
4. Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. Danhorn T; Hentzer M; Givskov M; Parsek MR; Fuqua C J Bacteriol; 2004 Jul; 186(14):4492-501. PubMed ID: 15231781 [TBL] [Abstract][Full Text] [Related]
5. Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Xu J; Kim J; Danhorn T; Merritt PM; Fuqua C Res Microbiol; 2012; 163(9-10):674-84. PubMed ID: 23103488 [TBL] [Abstract][Full Text] [Related]
6. Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. Merritt PM; Danhorn T; Fuqua C J Bacteriol; 2007 Nov; 189(22):8005-14. PubMed ID: 17766409 [TBL] [Abstract][Full Text] [Related]
7. Reciprocal control of motility and biofilm formation by the PdhS2 two-component sensor kinase of Agrobacterium tumefaciens. Heindl JE; Crosby D; Brar S; Pinto JF; Singletary T; Merenich D; Eagan JL; Buechlein AM; Bruger EL; Waters CM; Fuqua C Microbiology (Reading); 2019 Feb; 165(2):146-162. PubMed ID: 30620265 [TBL] [Abstract][Full Text] [Related]
8. Control of biofilm formation by an Greenwich JL; Eagan JL; Feirer N; Boswinkle K; Minasov G; Shuvalova L; Inniss NL; Raghavaiah J; Ghosh AK; Satchell KJF; Allen KD; Fuqua C Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2319903121. PubMed ID: 38870058 [TBL] [Abstract][Full Text] [Related]
9. Regulation of the Cobalt/Nickel Efflux Operon dmeRF in Agrobacterium tumefaciens and a Link between the Iron-Sensing Regulator RirA and Cobalt/Nickel Resistance. Dokpikul T; Chaoprasid P; Saninjuk K; Sirirakphaisarn S; Johnrod J; Nookabkaew S; Sukchawalit R; Mongkolsuk S Appl Environ Microbiol; 2016 Aug; 82(15):4732-4742. PubMed ID: 27235438 [TBL] [Abstract][Full Text] [Related]
11. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Ojha A; Hatfull GF Mol Microbiol; 2007 Oct; 66(2):468-83. PubMed ID: 17854402 [TBL] [Abstract][Full Text] [Related]
12. Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. Tomlinson AD; Ramey-Hartung B; Day TW; Merritt PM; Fuqua C Microbiology (Reading); 2010 Sep; 156(Pt 9):2670-2681. PubMed ID: 20576688 [TBL] [Abstract][Full Text] [Related]
13. The FNR-type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Ramey BE; Matthysse AG; Fuqua C Mol Microbiol; 2004 Jun; 52(5):1495-511. PubMed ID: 15165250 [TBL] [Abstract][Full Text] [Related]
14. Inhibition and dispersal of Agrobacterium tumefaciens biofilms by a small diffusible Pseudomonas aeruginosa exoproduct(s). Hibbing ME; Fuqua C Arch Microbiol; 2012 Jun; 194(6):391-403. PubMed ID: 22105093 [TBL] [Abstract][Full Text] [Related]
15. Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae. Tan JW; Wilksch JJ; Hocking DM; Wang N; Srikhanta YN; Tauschek M; Lithgow T; Robins-Browne RM; Yang J; Strugnell RA J Bacteriol; 2015 May; 197(9):1659-67. PubMed ID: 25733612 [TBL] [Abstract][Full Text] [Related]
16. Agrobacterium tumefaciens Zur Regulates the High-Affinity Zinc Uptake System TroCBA and the Putative Metal Chaperone YciC, along with ZinT and ZnuABC, for Survival under Zinc-Limiting Conditions. Chaoprasid P; Dokpikul T; Johnrod J; Sirirakphaisarn S; Nookabkaew S; Sukchawalit R; Mongkolsuk S Appl Environ Microbiol; 2016 Jun; 82(12):3503-3514. PubMed ID: 27060116 [TBL] [Abstract][Full Text] [Related]
17. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Matthysse AG; Marry M; Krall L; Kaye M; Ramey BE; Fuqua C; White AR Mol Plant Microbe Interact; 2005 Sep; 18(9):1002-10. PubMed ID: 16167770 [TBL] [Abstract][Full Text] [Related]
18. Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of Agrobacterium tumefaciens. Hibbing ME; Fuqua C J Bacteriol; 2011 Jul; 193(14):3461-72. PubMed ID: 21602352 [TBL] [Abstract][Full Text] [Related]
19. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms. Plyuta V; Lipasova V; Popova A; Koksharova O; Kuznetsov A; Szegedi E; Chernin L; Khmel I APMIS; 2016 Jul; 124(7):586-94. PubMed ID: 27214244 [TBL] [Abstract][Full Text] [Related]
20. BigR, a transcriptional repressor from plant-associated bacteria, regulates an operon implicated in biofilm growth. Barbosa RL; Benedetti CE J Bacteriol; 2007 Sep; 189(17):6185-94. PubMed ID: 17586627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]