These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26713216)

  • 1. OCT-based crystalline lens topography in accommodating eyes.
    Pérez-Merino P; Velasco-Ocana M; Martinez-Enriquez E; Marcos S
    Biomed Opt Express; 2015 Dec; 6(12):5039-54. PubMed ID: 26713216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT.
    Gambra E; Ortiz S; Perez-Merino P; Gora M; Wojtkowski M; Marcos S
    Biomed Opt Express; 2013; 4(9):1595-609. PubMed ID: 24049680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo human crystalline lens topography.
    Ortiz S; Pérez-Merino P; Gambra E; de Castro A; Marcos S
    Biomed Opt Express; 2012 Oct; 3(10):2471-88. PubMed ID: 23082289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OCT 3-D surface topography of isolated human crystalline lenses.
    Sun M; Birkenfeld J; de Castro A; Ortiz S; Marcos S
    Biomed Opt Express; 2014 Oct; 5(10):3547-61. PubMed ID: 25360371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional OCT based guinea pig eye model: relating morphology and optics.
    Pérez-Merino P; Velasco-Ocana M; Martinez-Enriquez E; Revuelta L; McFadden SA; Marcos S
    Biomed Opt Express; 2017 Apr; 8(4):2173-2184. PubMed ID: 28736663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OCT-based full crystalline lens shape change during accommodation in vivo.
    Martinez-Enriquez E; Pérez-Merino P; Velasco-Ocana M; Marcos S
    Biomed Opt Express; 2017 Feb; 8(2):918-933. PubMed ID: 28270993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation of corneal oblique astigmatism by internal optics: a theoretical analysis.
    Liu T; Thibos LN
    Ophthalmic Physiol Opt; 2017 May; 37(3):305-316. PubMed ID: 28281302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully automated biometry of in situ intraocular lenses using long scan depth spectral-domain optical coherence tomography.
    Chen Q; Leng L; Zhu D; Wang Y; Shao Y; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jan; 40(1):37-45. PubMed ID: 24335453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full OCT anterior segment biometry: an application in cataract surgery.
    Ortiz S; Pérez-Merino P; Durán S; Velasco-Ocana M; Birkenfeld J; de Castro A; Jiménez-Alfaro I; Marcos S
    Biomed Opt Express; 2013 Mar; 4(3):387-96. PubMed ID: 23503926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments.
    Ortiz S; Pérez-Merino P; Alejandre N; Gambra E; Jimenez-Alfaro I; Marcos S
    Biomed Opt Express; 2012 May; 3(5):814-24. PubMed ID: 22567577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corneal topography from spectral optical coherence tomography (sOCT).
    Ortiz S; Siedlecki D; Pérez-Merino P; Chia N; de Castro A; Szkulmowski M; Wojtkowski M; Marcos S
    Biomed Opt Express; 2011 Dec; 2(12):3232-47. PubMed ID: 22162814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular anterior segment biometry and high-order wavefront aberrations during accommodation.
    Yuan Y; Shao Y; Tao A; Shen M; Wang J; Shi G; Chen Q; Zhu D; Lian Y; Qu J; Zhang Y; Lu F
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):7028-37. PubMed ID: 24065809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slit-lamp studies of the rhesus monkey eye: II. Changes in crystalline lens shape, thickness and position during accommodation and aging.
    Koretz JF; Bertasso AM; Neider MW; True-Gabelt BA; Kaufman PL
    Exp Eye Res; 1987 Aug; 45(2):317-26. PubMed ID: 3653294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography.
    Neri A; Ruggeri M; Protti A; Leaci R; Gandolfi SA; Macaluso C
    J Cataract Refract Surg; 2015 Mar; 41(3):501-10. PubMed ID: 25704218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic biometry of the anterior segment during accommodation imaged by optical coherence tomography.
    Zhu D; Shao Y; Leng L; Xu Z; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jul; 40(4):232-8. PubMed ID: 24901975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5067-73. PubMed ID: 26241395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of cornea and lens biometry using anterior segment optical coherence tomography.
    Dunne MC; Davies LN; Wolffsohn JS
    J Biomed Opt; 2007; 12(6):064023. PubMed ID: 18163839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Verisyse and Artiflex phakic intraocular lenses during accommodation using Visante optical coherence tomography.
    Güell JL; Morral M; Gris O; Gaytan J; Sisquella M; Manero F
    J Cataract Refract Surg; 2007 Aug; 33(8):1398-404. PubMed ID: 17662431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive imaging and measurement of accommodation using dual-channel SD-OCT.
    Sun Y; Fan S; Zheng H; Dai C; Ren Q; Zhou C
    Curr Eye Res; 2014 Jun; 39(6):611-9. PubMed ID: 24206216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Coherence Tomography Reveals Sigmoidal Crystalline Lens Changes during Accommodation.
    Gibson GA; Cruickshank FE; Wolffsohn JS; Davies LN
    Vision (Basel); 2018 Aug; 2(3):. PubMed ID: 31735896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.