These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 26713421)
1. Protein kinase C-mediated mu-opioid receptor phosphorylation and desensitization in rats, and its prevention during early diabetes. Mousa SA; Shaqura M; Winkler J; Khalefa BI; Al-Madol MA; Shakibaei M; Schulz S; Schäfer M Pain; 2016 Apr; 157(4):910-921. PubMed ID: 26713421 [TBL] [Abstract][Full Text] [Related]
2. Reduced number, G protein coupling, and antinociceptive efficacy of spinal mu-opioid receptors in diabetic rats are reversed by nerve growth factor. Shaqura M; Khalefa BI; Shakibaei M; Winkler J; Al-Khrasani M; Fürst S; Mousa SA; Schäfer M J Pain; 2013 Jul; 14(7):720-30. PubMed ID: 23623572 [TBL] [Abstract][Full Text] [Related]
4. New insights into mechanisms of opioid inhibitory effects on capsaicin-induced TRPV1 activity during painful diabetic neuropathy. Shaqura M; Khalefa BI; Shakibaei M; Zöllner C; Al-Khrasani M; Fürst S; Schäfer M; Mousa SA Neuropharmacology; 2014 Oct; 85():142-50. PubMed ID: 24863039 [TBL] [Abstract][Full Text] [Related]
5. Heterologous regulation of agonist-independent μ-opioid receptor phosphorylation by protein kinase C. Illing S; Mann A; Schulz S Br J Pharmacol; 2014 Mar; 171(5):1330-40. PubMed ID: 24308893 [TBL] [Abstract][Full Text] [Related]
6. Thalidomide Promotes Morphine Efficacy and Prevents Morphine-Induced Tolerance in Rats with Diabetic Neuropathy. Zhao J; Wang H; Song T; Yang Y; Gu K; Ma P; Zhang Z; Shen L; Liu J; Wang W Neurochem Res; 2016 Dec; 41(12):3171-3180. PubMed ID: 27573481 [TBL] [Abstract][Full Text] [Related]
7. Impaired inhibitory G-protein function contributes to increased calcium currents in rats with diabetic neuropathy. Hall KE; Liu J; Sima AA; Wiley JW J Neurophysiol; 2001 Aug; 86(2):760-70. PubMed ID: 11495948 [TBL] [Abstract][Full Text] [Related]
8. Role of protein kinase C (PKC) in agonist-induced mu-opioid receptor down-regulation: II. Activation and involvement of the alpha, epsilon, and zeta isoforms of PKC. Kramer HK; Simon EJ J Neurochem; 1999 Feb; 72(2):594-604. PubMed ID: 9930731 [TBL] [Abstract][Full Text] [Related]
9. Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. Hong S; Wiley JW J Biol Chem; 2005 Jan; 280(1):618-27. PubMed ID: 15513920 [TBL] [Abstract][Full Text] [Related]
10. Protein kinase C-mediated inhibition of mu-opioid receptor internalization and its involvement in the development of acute tolerance to peripheral mu-agonist analgesia. Ueda H; Inoue M; Matsumoto T J Neurosci; 2001 May; 21(9):2967-73. PubMed ID: 11312280 [TBL] [Abstract][Full Text] [Related]
11. The antinociceptive and antihyperalgesic effect of tapentadol is partially retained in OPRM1 (μ-opioid receptor) knockout mice. Kögel B; De Vry J; Tzschentke TM; Christoph T Neurosci Lett; 2011 Mar; 491(2):104-7. PubMed ID: 21232580 [TBL] [Abstract][Full Text] [Related]
12. GRK2 Dictates a Functional Switch of the Peripheral Mu-Opioid Receptor. Zhang Y; Jeske NA ACS Chem Neurosci; 2020 Dec; 11(24):4376-4386. PubMed ID: 33174729 [TBL] [Abstract][Full Text] [Related]
13. Berberine ameliorates diabetic neuropathic pain in a rat model: involvement of oxidative stress, inflammation, and μ-opioid receptors. Dong J; Zuo Z; Yan W; Liu W; Zheng Q; Liu X Naunyn Schmiedebergs Arch Pharmacol; 2019 Sep; 392(9):1141-1149. PubMed ID: 31079200 [TBL] [Abstract][Full Text] [Related]
14. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Toth C; Rong LL; Yang C; Martinez J; Song F; Ramji N; Brussee V; Liu W; Durand J; Nguyen MD; Schmidt AM; Zochodne DW Diabetes; 2008 Apr; 57(4):1002-17. PubMed ID: 18039814 [TBL] [Abstract][Full Text] [Related]
15. Heteromerization of μ-opioid receptor and cholecystokinin B receptor through the third transmembrane domain of the μ-opioid receptor contributes to the anti-opioid effects of cholecystokinin octapeptide. Yang Y; Li Q; He QH; Han JS; Su L; Wan Y Exp Mol Med; 2018 May; 50(5):1-16. PubMed ID: 29780163 [TBL] [Abstract][Full Text] [Related]
16. Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Chen SR; Prunean A; Pan HM; Welker KL; Pan HL Neuroscience; 2007 Mar; 145(2):676-85. PubMed ID: 17239544 [TBL] [Abstract][Full Text] [Related]
18. Role of protein kinase C (PKC) in agonist-induced mu-opioid receptor down-regulation: I. PKC translocation to the membrane of SH-SY5Y neuroblastoma cells is induced by mu-opioid agonists. Kramer HK; Simon EJ J Neurochem; 1999 Feb; 72(2):585-93. PubMed ID: 9930730 [TBL] [Abstract][Full Text] [Related]
19. Mu opioid receptor stimulation activates c-Jun N-terminal kinase 2 by distinct arrestin-dependent and independent mechanisms. Kuhar JR; Bedini A; Melief EJ; Chiu YC; Striegel HN; Chavkin C Cell Signal; 2015 Sep; 27(9):1799-806. PubMed ID: 26056051 [TBL] [Abstract][Full Text] [Related]
20. T394A Mutation at the μ Opioid Receptor Blocks Opioid Tolerance and Increases Vulnerability to Heroin Self-Administration in Mice. Wang XF; Barbier E; Chiu YT; He Y; Zhan J; Bi GH; Zhang HY; Feng B; Liu-Chen LY; Wang JB; Xi ZX J Neurosci; 2016 Oct; 36(40):10392-10403. PubMed ID: 27707973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]