These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 26713437)
41. Fast and accurate Ab Initio Protein structure prediction using deep learning potentials. Pearce R; Li Y; Omenn GS; Zhang Y PLoS Comput Biol; 2022 Sep; 18(9):e1010539. PubMed ID: 36112717 [TBL] [Abstract][Full Text] [Related]
42. Secondary Structure and Contact Guided Differential Evolution for Protein Structure Prediction. Zhang GJ; Ma LF; Wang XQ; Zhou XG IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):1068-1081. PubMed ID: 30295627 [TBL] [Abstract][Full Text] [Related]
43. Analysis of deep learning methods for blind protein contact prediction in CASP12. Wang S; Sun S; Xu J Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538 [TBL] [Abstract][Full Text] [Related]
44. Assessment of protein assembly prediction in CASP12. Lafita A; Bliven S; Kryshtafovych A; Bertoni M; Monastyrskyy B; Duarte JM; Schwede T; Capitani G Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):247-256. PubMed ID: 29071742 [TBL] [Abstract][Full Text] [Related]
45. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta. Abbass J; Nebel JC Protein Pept Lett; 2017; 24(3):215-222. PubMed ID: 27993124 [TBL] [Abstract][Full Text] [Related]
46. FreeContact: fast and free software for protein contact prediction from residue co-evolution. Kaján L; Hopf TA; Kalaš M; Marks DS; Rost B BMC Bioinformatics; 2014 Mar; 15():85. PubMed ID: 24669753 [TBL] [Abstract][Full Text] [Related]
47. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter. Yang J; Jin QY; Zhang B; Shen HB Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618 [TBL] [Abstract][Full Text] [Related]
48. The whole is greater than its parts: ensembling improves protein contact prediction. Billings WM; Morris CJ; Della Corte D Sci Rep; 2021 Apr; 11(1):8039. PubMed ID: 33850214 [TBL] [Abstract][Full Text] [Related]
49. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction. Xu D; Jaroszewski L; Li Z; Godzik A Bioinformatics; 2015 Jul; 31(13):2098-105. PubMed ID: 25701568 [TBL] [Abstract][Full Text] [Related]
50. Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning. Ma J; Wang S; Wang Z; Xu J Bioinformatics; 2015 Nov; 31(21):3506-13. PubMed ID: 26275894 [TBL] [Abstract][Full Text] [Related]
51. Ab initio modeling of small proteins by iterative TASSER simulations. Wu S; Skolnick J; Zhang Y BMC Biol; 2007 May; 5():17. PubMed ID: 17488521 [TBL] [Abstract][Full Text] [Related]
52. Automatic structure prediction of oligomeric assemblies using Robetta in CASP12. Park H; Kim DE; Ovchinnikov S; Baker D; DiMaio F Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):283-291. PubMed ID: 28913931 [TBL] [Abstract][Full Text] [Related]
53. BCL::contact-low confidence fold recognition hits boost protein contact prediction and de novo structure determination. Karakaş M; Woetzel N; Meiler J J Comput Biol; 2010 Feb; 17(2):153-68. PubMed ID: 19772383 [TBL] [Abstract][Full Text] [Related]
54. CONFOLD2: improved contact-driven ab initio protein structure modeling. Adhikari B; Cheng J BMC Bioinformatics; 2018 Jan; 19(1):22. PubMed ID: 29370750 [TBL] [Abstract][Full Text] [Related]
55. Predicting interresidue contacts using templates and pathways. Shao Y; Bystroff C Proteins; 2003; 53 Suppl 6():497-502. PubMed ID: 14579339 [TBL] [Abstract][Full Text] [Related]
56. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Kamisetty H; Ovchinnikov S; Baker D Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15674-9. PubMed ID: 24009338 [TBL] [Abstract][Full Text] [Related]
57. Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions. Mortuza SM; Zheng W; Zhang C; Li Y; Pearce R; Zhang Y Nat Commun; 2021 Aug; 12(1):5011. PubMed ID: 34408149 [TBL] [Abstract][Full Text] [Related]
58. A study and benchmark of DNcon: a method for protein residue-residue contact prediction using deep networks. Eickholt J; Cheng J BMC Bioinformatics; 2013; 14 Suppl 14(Suppl 14):S12. PubMed ID: 24267585 [TBL] [Abstract][Full Text] [Related]
59. KScons: a Bayesian approach for protein residue contact prediction using the knob-socket model of protein tertiary structure. Li Q; Dahl DB; Vannucci M; Joo H; Tsai JW Bioinformatics; 2016 Dec; 32(24):3774-3781. PubMed ID: 27559156 [TBL] [Abstract][Full Text] [Related]
60. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks. Sun J; Frishman D J Struct Biol; 2020 Oct; 212(1):107574. PubMed ID: 32663598 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]