BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26713534)

  • 1. [Expression of plateau adaptation gene of rat tissues after plain acute exposure to high altitude].
    Xie H; Hao Y; Yin Q; Li WB; Lu H; Jia ZP; Wang R
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2015 Sep; 44(5):571-7. PubMed ID: 26713534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders.
    Tashi T; Scott Reading N; Wuren T; Zhang X; Moore LG; Hu H; Tang F; Shestakova A; Lorenzo F; Burjanivova T; Koul P; Guchhait P; Wittwer CT; Julian CG; Shah B; Huff CD; Gordeuk VR; Prchal JT; Ge R
    J Mol Med (Berl); 2017 Jun; 95(6):665-670. PubMed ID: 28233034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau.
    Buroker NE; Ning XH; Zhou ZN; Li K; Cen WJ; Wu XF; Zhu WZ; Scott CR; Chen SH
    Blood Cells Mol Dis; 2012 Aug; 49(2):67-73. PubMed ID: 22595196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Correlation between EGLN1 gene, protein express in lung tissue of rats and pulmonary artery pressure at different altitude].
    Li SH; Li S; Sun L; Bai ZZ; Yang QY; Ga Q; Jin GE
    Zhonghua Yi Xue Za Zhi; 2016 Aug; 96(32):2592-7. PubMed ID: 27596558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and immune changes in Tibetan high-altitude populations contribute to biological adaptation to hypoxia.
    Bai J; Li L; Li Y; Zhang L
    Environ Health Prev Med; 2022; 27():39. PubMed ID: 36244759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia.
    Petousi N; Croft QP; Cavalleri GL; Cheng HY; Formenti F; Ishida K; Lunn D; McCormack M; Shianna KV; Talbot NP; Ratcliffe PJ; Robbins PA
    J Appl Physiol (1985); 2014 Apr; 116(7):893-904. PubMed ID: 24030663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human high-altitude adaptation: forward genetics meets the HIF pathway.
    Bigham AW; Lee FS
    Genes Dev; 2014 Oct; 28(20):2189-204. PubMed ID: 25319824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks.
    Graham AM; McCracken KG
    Heredity (Edinb); 2019 Jun; 122(6):819-832. PubMed ID: 30631144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of
    Li XY; Wu CH; Yan YJ; Wang DH; Wang MJ; Hou ZW
    Zhongguo Zhen Jiu; 2022 Nov; 42(11):1278-84. PubMed ID: 36397226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibetan
    Song D; Navalsky BE; Guan W; Ingersoll C; Wang T; Loro E; Eeles L; Matchett KB; Percy MJ; Walsby-Tickle J; McCullagh JSO; Medina RJ; Khurana TS; Bigham AW; Lappin TR; Lee FS
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):12230-12238. PubMed ID: 32414920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia Inducible Factor pathway proteins in high-altitude mammals.
    Lee FS
    Trends Biochem Sci; 2024 Jan; 49(1):79-92. PubMed ID: 38036336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic determinants of Tibetan high-altitude adaptation.
    Simonson TS; McClain DA; Jorde LB; Prchal JT
    Hum Genet; 2012 Apr; 131(4):527-33. PubMed ID: 22068265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans.
    Simonson TS; Huff CD; Witherspoon DJ; Prchal JT; Jorde LB
    Exp Physiol; 2015 Nov; 100(11):1263-8. PubMed ID: 26454145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential methylation in EGLN1 associates with blood oxygen saturation and plasma protein levels in high-altitude pulmonary edema.
    Sharma K; Mishra A; Singh H; Thinlas T; Pasha MAQ
    Clin Epigenetics; 2022 Sep; 14(1):123. PubMed ID: 36180894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia.
    Peng Y; Cui C; He Y; Ouzhuluobu ; Zhang H; Yang D; Zhang Q; Bianbazhuoma ; Yang L; He Y; Xiang K; Zhang X; Bhandari S; Shi P; Yangla ; Dejiquzong ; Baimakangzhuo ; Duojizhuoma ; Pan Y; Cirenyangji ; Baimayangji ; Gonggalanzi ; Bai C; Bianba ; Basang ; Ciwangsangbu ; Xu S; Chen H; Liu S; Wu T; Qi X; Su B
    Mol Biol Evol; 2017 Apr; 34(4):818-830. PubMed ID: 28096303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of aminophylline on physiological and pathological changes in acute exposure to high altitude in rats].
    Wang C; Wang R; Xie H; Yin Q; Jia Z; Li W; Wang Y; Lu H; Tao R
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2015 Jan; 40(1):39-45. PubMed ID: 25652383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Adaptation to high altitudes: on which genes was selective pressure exercised?].
    Labie D
    Med Sci (Paris); 2010 Dec; 26(12):1038-9. PubMed ID: 21187040
    [No Abstract]   [Full Text] [Related]  

  • 18. Defective Tibetan PHD2 binding to p23 links high altitude adaption to altered oxygen sensing.
    Song D; Li LS; Arsenault PR; Tan Q; Bigham AW; Heaton-Johnson KJ; Master SR; Lee FS
    J Biol Chem; 2014 May; 289(21):14656-65. PubMed ID: 24711448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era.
    Petousi N; Robbins PA
    J Appl Physiol (1985); 2014 Apr; 116(7):875-84. PubMed ID: 24201705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Altitude and Duration of Differing Levels of Hypoxic Exposure on Hypoxia-Inducible Factor-1α in Rat Tissues.
    Li XL; Wang WG; Li MX; Liu TL; Tian XY; Wu L
    High Alt Med Biol; 2022 Jun; 23(2):173-184. PubMed ID: 35708531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.