These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 26713863)
1. The Contribution of Network Organization and Integration to the Development of Cognitive Control. Marek S; Hwang K; Foran W; Hallquist MN; Luna B PLoS Biol; 2015 Dec; 13(12):e1002328. PubMed ID: 26713863 [TBL] [Abstract][Full Text] [Related]
2. Key Brain Network Nodes Show Differential Cognitive Relevance and Developmental Trajectories during Childhood and Adolescence. Kolskår KK; Alnæs D; Kaufmann T; Richard G; Sanders AM; Ulrichsen KM; Moberget T; Andreassen OA; Nordvik JE; Westlye LT eNeuro; 2018; 5(4):. PubMed ID: 30073200 [TBL] [Abstract][Full Text] [Related]
3. Genetic and environmental influences on functional connectivity within and between canonical cortical resting-state networks throughout adolescent development in boys and girls. Teeuw J; Brouwer RM; Guimarães JPOFT; Brandner P; Koenis MMG; Swagerman SC; Verwoert M; Boomsma DI; Hulshoff Pol HE Neuroimage; 2019 Nov; 202():116073. PubMed ID: 31386921 [TBL] [Abstract][Full Text] [Related]
4. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance? Alavash M; Doebler P; Holling H; Thiel CM; Gießing C Neuroimage; 2015 Mar; 108():182-93. PubMed ID: 25536495 [TBL] [Abstract][Full Text] [Related]
5. Susceptibility to everyday cognitive failure is reflected in functional network interactions in the resting brain. Bey K; Montag C; Reuter M; Weber B; Markett S Neuroimage; 2015 Nov; 121():1-9. PubMed ID: 26210814 [TBL] [Abstract][Full Text] [Related]
6. Functional brain networks develop from a "local to distributed" organization. Fair DA; Cohen AL; Power JD; Dosenbach NU; Church JA; Miezin FM; Schlaggar BL; Petersen SE PLoS Comput Biol; 2009 May; 5(5):e1000381. PubMed ID: 19412534 [TBL] [Abstract][Full Text] [Related]
7. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Grady C; Sarraf S; Saverino C; Campbell K Neurobiol Aging; 2016 May; 41():159-172. PubMed ID: 27103529 [TBL] [Abstract][Full Text] [Related]
8. Trajectories of brain system maturation from childhood to older adulthood: Implications for lifespan cognitive functioning. Petrican R; Taylor MJ; Grady CL Neuroimage; 2017 Dec; 163():125-149. PubMed ID: 28917697 [TBL] [Abstract][Full Text] [Related]
9. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity. Liljeström M; Stevenson C; Kujala J; Salmelin R Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324 [TBL] [Abstract][Full Text] [Related]
10. The neural architecture of executive functions is established by middle childhood. Engelhardt LE; Harden KP; Tucker-Drob EM; Church JA Neuroimage; 2019 Jan; 185():479-489. PubMed ID: 30312810 [TBL] [Abstract][Full Text] [Related]
11. The development of hub architecture in the human functional brain network. Hwang K; Hallquist MN; Luna B Cereb Cortex; 2013 Oct; 23(10):2380-93. PubMed ID: 22875861 [TBL] [Abstract][Full Text] [Related]
12. Frontal preparatory neural oscillations associated with cognitive control: A developmental study comparing young adults and adolescents. Hwang K; Ghuman AS; Manoach DS; Jones SR; Luna B Neuroimage; 2016 Aug; 136():139-48. PubMed ID: 27173759 [TBL] [Abstract][Full Text] [Related]
13. The Reference Ability Neural Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults. Habeck C; Gazes Y; Razlighi Q; Steffener J; Brickman A; Barulli D; Salthouse T; Stern Y Neuroimage; 2016 Jan; 125():693-704. PubMed ID: 26522424 [TBL] [Abstract][Full Text] [Related]
14. Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: a functional magnetic resonance imaging effective connectivity study. Hwang K; Velanova K; Luna B J Neurosci; 2010 Nov; 30(46):15535-45. PubMed ID: 21084608 [TBL] [Abstract][Full Text] [Related]
15. Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Church JA; Fair DA; Dosenbach NU; Cohen AL; Miezin FM; Petersen SE; Schlaggar BL Brain; 2009 Jan; 132(Pt 1):225-38. PubMed ID: 18952678 [TBL] [Abstract][Full Text] [Related]
16. Age effects on the default mode and control networks in typically developing children. Sato JR; Salum GA; Gadelha A; Picon FA; Pan PM; Vieira G; Zugman A; Hoexter MQ; Anés M; Moura LM; Gomes Del'Aquilla MA; Amaro E; McGuire P; Crossley N; Lacerda A; Rohde LA; Miguel EC; Bressan RA; Jackowski AP J Psychiatr Res; 2014 Nov; 58():89-95. PubMed ID: 25085608 [TBL] [Abstract][Full Text] [Related]
17. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI. Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936 [TBL] [Abstract][Full Text] [Related]
18. Changes in structural and functional connectivity among resting-state networks across the human lifespan. Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530 [TBL] [Abstract][Full Text] [Related]
19. Reconfiguration of the Brain Functional Network Associated with Visual Task Demands. Wen X; Zhang D; Liang B; Zhang R; Wang Z; Wang J; Liu M; Huang R PLoS One; 2015; 10(7):e0132518. PubMed ID: 26146993 [TBL] [Abstract][Full Text] [Related]