BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 26714058)

  • 1. Contribution of cosmic ray particles to radiation environment at high mountain altitude: Comparison of Monte Carlo simulations with experimental data.
    Mishev AL
    J Environ Radioact; 2016 Mar; 153():15-22. PubMed ID: 26714058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cosmic-ray exposure assessment using particle and heavy ion transport code system: case study Douala-Cameroon.
    Didier TSS; Joel GSC; Saïdou ; Samuel BG; Maurice NM
    Radiat Prot Dosimetry; 2024 May; 200(7):640-647. PubMed ID: 38648184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the neutron spectrum at flight altitude with Geant4 using different parameterizations.
    Pazianotto MT; Federico CA; Gonçalez OL; Carlson BV
    Radiat Prot Dosimetry; 2023 Oct; 199(15-16):2035-2040. PubMed ID: 37819345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation environment in high-altitude Antarctic plateau: Recent measurements and model studies.
    Mishev AL; Kodaira S; Kitamura H; Ploc O; Ambrožová I; Tolochek RV; Kartsev IS; Shurshakov VA; Artamonov AA; Inozemtsev KO
    Sci Total Environ; 2023 Sep; 890():164304. PubMed ID: 37230348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid assessment of cosmic radiation exposure in aviation based on BP neural network method.
    Wang B; Fang M; Song D; Cheng J; Wu K
    Radiat Prot Dosimetry; 2024 Jun; 200(9):822-835. PubMed ID: 38794881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-scale simulation of neuronal damage by galactic cosmic rays.
    Peter JS; Schuemann J; Held KD; McNamara AL
    Phys Med Biol; 2022 Nov; 67(23):. PubMed ID: 36172820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral distribution cosmic ray muon coincidences up to 36 m.
    Kihagi VN; Chege SM; Hashim NO; Kimani NK; Grupen C
    MethodsX; 2024 Jun; 12():102715. PubMed ID: 38660029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.
    Sato T
    PLoS One; 2015; 10(12):e0144679. PubMed ID: 26674183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating galactic cosmic ray environment models using RaD-X flight data.
    Norman RB; Mertens CJ; Slaba TC
    Space Weather; 2016 Oct; 14(10):764-775. PubMed ID: 33442335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation dose and its protection in the Moon from galactic cosmic rays and solar energetic particles: at the lunar surface and in a lava tube.
    Naito M; Hasebe N; Shikishima M; Amano Y; Haruyama J; Matias-Lopes JA; Kim KJ; Kodaira S
    J Radiol Prot; 2020 Sep; 40(4):947-961. PubMed ID: 32964860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.
    Sato T
    PLoS One; 2016; 11(8):e0160390. PubMed ID: 27490175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global dose distributions of neutrons and gamma-rays on the Moon.
    Naito M; Kusano H; Kodaira S
    Sci Rep; 2023 Aug; 13(1):13275. PubMed ID: 37582838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. History of Atmospheric Cosmic Ray Research at the National Bureau of Standards.
    Coursey BM
    J Res Natl Inst Stand Technol; 2020; 125():125001. PubMed ID: 34900399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of Ultra-High-Energy Diffuse Gamma-Ray Emission of the Galactic Plane from 10 TeV to 1 PeV with LHAASO-KM2A.
    Cao Z; Aharonian F; An Q; Axikegu ; Bai YX; Bao YW; Bastieri D; Bi XJ; Bi YJ; Cai JT; Cao Q; Cao WY; Cao Z; Chang J; Chang JF; Chen AM; Chen ES; Chen L; Chen L; Chen L; Chen MJ; Chen ML; Chen QH; Chen SH; Chen SZ; Chen TL; Chen Y; Cheng N; Cheng YD; Cui MY; Cui SW; Cui XH; Cui YD; Dai BZ; Dai HL; Dai ZG; Danzengluobu ; Della Volpe D; Dong XQ; Duan KK; Fan JH; Fan YZ; Fang J; Fang K; Feng CF; Feng L; Feng SH; Feng XT; Feng YL; Gabici S; Gao B; Gao CD; Gao LQ; Gao Q; Gao W; Gao WK; Ge MM; Geng LS; Giacinti G; Gong GH; Gou QB; Gu MH; Guo FL; Guo XL; Guo YQ; Guo YY; Han YA; He HH; He HN; He JY; He XB; He Y; Heller M; Hor YK; Hou BW; Hou C; Hou X; Hu HB; Hu Q; Hu SC; Huang DH; Huang TQ; Huang WJ; Huang XT; Huang XY; Huang Y; Huang ZC; Ji XL; Jia HY; Jia K; Jiang K; Jiang XW; Jiang ZJ; Jin M; Kang MM; Ke T; Kuleshov D; Kurinov K; Li BB; Li C; Li C; Li D; Li F; Li HB; Li HC; Li HY; Li J; Li J; Li J; Li K; Li WL; Li WL; Li XR; Li X; Li YZ; Li Z; Li Z; Liang EW; Liang YF; Lin SJ; Liu B; Liu C; Liu D; Liu H; Liu HD; Liu J; Liu JL; Liu JY; Liu MY; Liu RY; Liu SM; Liu W; Liu Y; Liu YN; Lu R; Luo Q; Lv HK; Ma BQ; Ma LL; Ma XH; Mao JR; Min Z; Mitthumsiri W; Mu HJ; Nan YC; Neronov A; Ou ZW; Pang BY; Pattarakijwanich P; Pei ZY; Qi MY; Qi YQ; Qiao BQ; Qin JJ; Ruffolo D; Sáiz A; Semikoz D; Shao CY; Shao L; Shchegolev O; Sheng XD; Shu FW; Song HC; Stenkin YV; Stepanov V; Su Y; Sun QN; Sun XN; Sun ZB; Tam PHT; Tang QW; Tang ZB; Tian WW; Wang C; Wang CB; Wang GW; Wang HG; Wang HH; Wang JC; Wang K; Wang LP; Wang LY; Wang PH; Wang R; Wang W; Wang XG; Wang XY; Wang Y; Wang YD; Wang YJ; Wang ZH; Wang ZX; Wang Z; Wang Z; Wei DM; Wei JJ; Wei YJ; Wen T; Wu CY; Wu HR; Wu S; Wu XF; Wu YS; Xi SQ; Xia J; Xia JJ; Xiang GM; Xiao DX; Xiao G; Xin GG; Xin YL; Xing Y; Xiong Z; Xu DL; Xu RF; Xu RX; Xu WL; Xue L; Yan DH; Yan JZ; Yan T; Yang CW; Yang F; Yang FF; Yang HW; Yang JY; Yang LL; Yang MJ; Yang RZ; Yang SB; Yao YH; Yao ZG; Ye YM; Yin LQ; Yin N; You XH; You ZY; Yu YH; Yuan Q; Yue H; Zeng HD; Zeng TX; Zeng W; Zha M; Zhang BB; Zhang F; Zhang HM; Zhang HY; Zhang JL; Zhang LX; Zhang L; Zhang PF; Zhang PP; Zhang R; Zhang SB; Zhang SR; Zhang SS; Zhang X; Zhang XP; Zhang YF; Zhang Y; Zhang Y; Zhao B; Zhao J; Zhao L; Zhao LZ; Zhao SP; Zheng F; Zhou B; Zhou H; Zhou JN; Zhou M; Zhou P; Zhou R; Zhou XX; Zhu CG; Zhu FR; Zhu H; Zhu KJ; Zuo X;
    Phys Rev Lett; 2023 Oct; 131(15):151001. PubMed ID: 37897763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of Cosmic Ray and Trapped Proton LET Spectra on the STS-95 HOST Mission.
    Stassinopoulos EG; Barth JL; Stauffer CA
    IEEE Trans Nucl Sci; 2017 Aug; 64(8):2007-2015. PubMed ID: 32747836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sharp Rise in Cosmic Ray Irradiation of Organisms on Earth Caused by a Nearby SN Shockwave Passage.
    Shchepkin AA; Vasilyev GI; Ostryakov VM; Pavlov AK
    Astrobiology; 2024 Jun; 24(6):604-612. PubMed ID: 38717897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition Classification of Ultra-High Energy Cosmic Rays.
    Herrera LJ; Todero Peixoto CJ; Baños O; Carceller JM; Carrillo F; Guillén A
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radium deposition in human brain tissue: A Geant4-DNA Monte Carlo toolkit study.
    Mortazavi SMJ; Rafiepour P; Mortazavi SAR; Razavi Toosi SMT; Shomal PR; Sihver L
    Z Med Phys; 2024 Feb; 34(1):166-174. PubMed ID: 38420703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Coherence and Change in Emission Physics for Radio Emission from Very Inclined Cosmic-Ray Air Showers.
    Chiche S; Zhang C; Schlüter F; Kotera K; Huege T; de Vries KD; Tueros M; Guelfand M
    Phys Rev Lett; 2024 Jun; 132(23):231001. PubMed ID: 38905691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation and validation studies of a large drift tube muon tracker.
    Yang G; Schoetker J; Poulson D; Guardincerri E; Durham JM; Vogel S; Hoerner S; Aberle D; Sun KX; Morris CL; Kaiser R; Osborne A
    Rev Sci Instrum; 2023 Aug; 94(8):. PubMed ID: 37526516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.