BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 26714067)

  • 1. Discovery of the gray phenotype and white-gray-opaque tristable phenotypic transitions in Candida dubliniensis.
    Yue H; Hu J; Guan G; Tao L; Du H; Li H; Huang G
    Virulence; 2016 Apr; 7(3):230-42. PubMed ID: 26714067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of a "white-gray-opaque" tristable phenotypic switching system in candida albicans: roles of non-genetic diversity in host adaptation.
    Tao L; Du H; Guan G; Dai Y; Nobile CJ; Liang W; Cao C; Zhang Q; Zhong J; Huang G
    PLoS Biol; 2014 Apr; 12(4):e1001830. PubMed ID: 24691005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gray phenotype and tristable phenotypic transitions in the human fungal pathogen Candida tropicalis.
    Zhang Y; Tao L; Zhang Q; Guan G; Nobile CJ; Zheng Q; Ding X; Huang G
    Fungal Genet Biol; 2016 Aug; 93():10-6. PubMed ID: 27246518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the N-acetylglucosamine kinase (Hxk1) in the regulation of white-gray-opaque tristable phenotypic transitions in C. albicans.
    Cao C; Guan G; Du H; Tao L; Huang G
    Fungal Genet Biol; 2016 Jul; 92():26-32. PubMed ID: 27153757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The closely related species Candida albicans and Candida dubliniensis can mate.
    Pujol C; Daniels KJ; Lockhart SR; Srikantha T; Radke JB; Geiger J; Soll DR
    Eukaryot Cell; 2004 Aug; 3(4):1015-27. PubMed ID: 15302834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida dubliniensis: ten years on.
    Sullivan DJ; Moran GP; Coleman DC
    FEMS Microbiol Lett; 2005 Dec; 253(1):9-17. PubMed ID: 16213674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virulence of "white-gray-opaque" tri-stable transformation in clinical Candida albicans in vitro and in vivo.
    Yang J; Feng W; Xi Z; Yang L; Zhao X; Ma Y; Ma Y
    Microb Pathog; 2021 May; 154():104825. PubMed ID: 33689812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida albicans Double Mutants Lacking both
    Park YN; Pujol C; Wessels DJ; Soll DR
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32968010
    [No Abstract]   [Full Text] [Related]  

  • 9. Exoenzyme activity and possibility identification of Candida dubliniensis among Candida albicans species isolated from vaginal candidiasis.
    Jafari M; Salari S; Pakshir K; Zomorodian K
    Microb Pathog; 2017 Sep; 110():73-77. PubMed ID: 28642006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.
    Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ
    Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential virulence of Candida albicans and C. dubliniensis: A role for Tor1 kinase?
    Sullivan DJ; Moran GP
    Virulence; 2011; 2(1):77-81. PubMed ID: 21289475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candida dubliniensis: phylogeny and putative virulence factors.
    D Gilfillan G; Derek J S; Parkinson T; Coleman DC; Gow NAR
    Microbiology (Reading); 1998 Apr; 144 ( Pt 4)():829-838. PubMed ID: 9579058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans.
    Sullivan DJ; Moran GP; Pinjon E; Al-Mosaid A; Stokes C; Vaughan C; Coleman DC
    FEMS Yeast Res; 2004 Jan; 4(4-5):369-76. PubMed ID: 14734017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis.
    Pujol C; Daniels KJ; Soll DR
    Eukaryot Cell; 2015 Dec; 14(12):1186-202. PubMed ID: 26432632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular genetic system for the pathogenic yeast Candida dubliniensis.
    Staib P; Michel S; Köhler G; Morschhäuser J
    Gene; 2000 Jan; 242(1-2):393-8. PubMed ID: 10721733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans.
    Jackson AP; Gamble JA; Yeomans T; Moran GP; Saunders D; Harris D; Aslett M; Barrell JF; Butler G; Citiulo F; Coleman DC; de Groot PW; Goodwin TJ; Quail MA; McQuillan J; Munro CA; Pain A; Poulter RT; Rajandream MA; Renauld H; Spiering MJ; Tivey A; Gow NA; Barrell B; Sullivan DJ; Berriman M
    Genome Res; 2009 Dec; 19(12):2231-44. PubMed ID: 19745113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of the TLO gene family enhances the virulence of Candida species.
    Flanagan PR; Fletcher J; Boyle H; Sulea R; Moran GP; Sullivan DJ
    PLoS One; 2018; 13(7):e0200852. PubMed ID: 30028853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotyping of Candida albicans and Candida dubliniensis by 25S rDNA analysis shows association with virulence attributes in oral candidiasis.
    Tantivitayakul P; Panpradit N; Maudcheingka T; Klaophimai A; Lapirattanakul J
    Arch Oral Biol; 2019 Jan; 97():18-24. PubMed ID: 30321765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental and genetic regulation of white-opaque switching in Candida tropicalis.
    Zheng Q; Zhang Q; Bing J; Ding X; Huang G
    Mol Microbiol; 2017 Dec; 106(6):999-1017. PubMed ID: 29030879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenicity and virulence of Candida dubliniensis: comparison with C. albicans.
    Vilela MM; Kamei K; Sano A; Tanaka R; Uno J; Takahashi I; Ito J; Yarita K; Miyaji M
    Med Mycol; 2002 Jun; 40(3):249-57. PubMed ID: 12146754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.