These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 26714232)

  • 1. Scrambling of disulfide bond scaffolds in neurotoxin AuIB: A molecular dynamics simulation study.
    Roy D; Lakshminarayanan M
    Biopolymers; 2016 Mar; 106(2):196-209. PubMed ID: 26714232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous ionic liquids influence the disulfide bond isoform equilibrium in conotoxin AuIB: a consequence of the Hofmeister effect?
    Sajeevan KA; Roy D
    Biophys Rev; 2018 Jun; 10(3):769-780. PubMed ID: 29294259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent molecular dynamics study reveals an ionic liquid induced 3
    Sajeevan KA; Roy D
    Biopolymers; 2017 May; 108(3):. PubMed ID: 28009043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide Sequence and Solvent as Levers to Control Disulfide Connectivity in Multiple Cysteine Containing Venom Toxins.
    Sajeevan KA; Roy D
    J Phys Chem B; 2018 Jun; 122(22):5776-5789. PubMed ID: 29757637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of α-conotoxin AuIB: influences of disulfide connectivity and backbone cyclization.
    Lovelace ES; Gunasekera S; Alvarmo C; Clark RJ; Nevin ST; Grishin AA; Adams DJ; Craik DJ; Daly NL
    Antioxid Redox Signal; 2011 Jan; 14(1):87-95. PubMed ID: 20486767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the stability of α-conotoxin AuIB through N-to-C cyclization: the effect of linker length on stability and activity at nicotinic acetylcholine receptors.
    Armishaw CJ; Jensen AA; Balle LD; Scott KC; Sørensen L; Strømgaard K
    Antioxid Redox Signal; 2011 Jan; 14(1):65-76. PubMed ID: 20649464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Cys
    Tabassum N; Tae HS; Jia X; Kaas Q; Jiang T; Adams DJ; Yu R
    ACS Omega; 2017 Aug; 2(8):4621-4631. PubMed ID: 30023726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed atomistic molecular dynamics simulations of alpha-conotoxin AuIB in water.
    Karayiannis NCh; Laso M; Kröger M
    J Phys Chem B; 2009 Apr; 113(15):5016-24. PubMed ID: 19309093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics.
    Dupuis JH; Wang S; Song C; Yada RY
    PLoS One; 2020; 15(8):e0237884. PubMed ID: 32841243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the disulfide bond on the monomeric structure of human amylin studied by combined Hamiltonian and temperature replica exchange molecular dynamics simulations.
    Laghaei R; Mousseau N; Wei G
    J Phys Chem B; 2010 May; 114(20):7071-7. PubMed ID: 20429571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability.
    Hodges RS; Zhou NE; Kay CM; Semchuk PD
    Pept Res; 1990; 3(3):123-37. PubMed ID: 2134057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure determination of the three disulfide bond isomers of alpha-conotoxin GI: a model for the role of disulfide bonds in structural stability.
    Gehrmann J; Alewood PF; Craik DJ
    J Mol Biol; 1998 May; 278(2):401-15. PubMed ID: 9571060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denaturation and unfolding of human anaphylatoxin C3a: an unusually low covalent stability of its native disulfide bonds.
    Chang JY; Lin CC; Salamanca S; Pangburn MK; Wetsel RA
    Arch Biochem Biophys; 2008 Dec; 480(2):104-10. PubMed ID: 18854167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational study of ion current modulation in hVDAC3 induced by disulfide bonds.
    Guardiani C; Leggio L; Scorciapino MA; de Pinto V; Ceccarelli M
    Biochim Biophys Acta; 2016 Apr; 1858(4):813-23. PubMed ID: 26806159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the structural properties of human and rat islet amyloid polypeptide by MD computer simulations.
    Andrews MN; Winter R
    Biophys Chem; 2011 Jun; 156(1):43-50. PubMed ID: 21266296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential roles for disulfide bonds in the structural integrity and biological activity of kappa-Bungarotoxin, a neuronal nicotinic acetylcholine receptor antagonist.
    Grant GA; Luetje CW; Summers R; Xu XL
    Biochemistry; 1998 Sep; 37(35):12166-71. PubMed ID: 9724529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and structure-forming properties of the two disulfide bonds of alpha-conotoxin GI.
    Kaerner A; Rabenstein DL
    Biochemistry; 1999 Apr; 38(17):5459-70. PubMed ID: 10220333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of human serum albumin and role of disulfide bonds.
    Castellanos MM; Colina CM
    J Phys Chem B; 2013 Oct; 117(40):11895-905. PubMed ID: 24066859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissimilarity in the reductive unfolding pathways of two ribonuclease homologues.
    Narayan M; Xu G; Ripoll DR; Zhai H; Breuker K; Wanjalla C; Leung HJ; Navon A; Welker E; McLafferty FW; Scheraga HA
    J Mol Biol; 2004 May; 338(4):795-809. PubMed ID: 15099746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology modeling and molecular dynamics simulations of lymphotactin.
    Buyong ; Xiong J; Lubkowski J; Nussinov R
    Protein Sci; 2000 Nov; 9(11):2192-9. PubMed ID: 11152129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.