These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 26714287)
1. A Randomized Controlled Trial Comparing the Efficacy of Cyp3a5 Genotype-Based With Body-Weight-Based Tacrolimus Dosing After Living Donor Kidney Transplantation. Shuker N; Bouamar R; van Schaik RH; Clahsen-van Groningen MC; Damman J; Baan CC; van de Wetering J; Rowshani AT; Weimar W; van Gelder T; Hesselink DA Am J Transplant; 2016 Jul; 16(7):2085-96. PubMed ID: 26714287 [TBL] [Abstract][Full Text] [Related]
2. Long-Term Clinical Impact of Adaptation of Initial Tacrolimus Dosing to CYP3A5 Genotype. Pallet N; Etienne I; Buchler M; Bailly E; Hurault de Ligny B; Choukroun G; Colosio C; Thierry A; Vigneau C; Moulin B; Le Meur Y; Heng AE; Legendre C; Beaune P; Loriot MA; Thervet E Am J Transplant; 2016 Sep; 16(9):2670-5. PubMed ID: 26990694 [TBL] [Abstract][Full Text] [Related]
3. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles. Oetting WS; Schladt DP; Guan W; Miller MB; Remmel RP; Dorr C; Sanghavi K; Mannon RB; Herrera B; Matas AJ; Salomon DR; Kwok PY; Keating BJ; Israni AK; Jacobson PA; Am J Transplant; 2016 Feb; 16(2):574-82. PubMed ID: 26485092 [TBL] [Abstract][Full Text] [Related]
4. Tacrolimus trough and dose intra-patient variability and CYP3A5 genotype: Effects on acute rejection and graft failure in European American and African American kidney transplant recipients. Seibert SR; Schladt DP; Wu B; Guan W; Dorr C; Remmel RP; Matas AJ; Mannon RB; Israni AK; Oetting WS; Jacobson PA Clin Transplant; 2018 Dec; 32(12):e13424. PubMed ID: 30318646 [TBL] [Abstract][Full Text] [Related]
5. Results of ASERTAA, a Randomized Prospective Crossover Pharmacogenetic Study of Immediate-Release Versus Extended-Release Tacrolimus in African American Kidney Transplant Recipients. Trofe-Clark J; Brennan DC; West-Thielke P; Milone MC; Lim MA; Neubauer R; Nigro V; Bloom RD Am J Kidney Dis; 2018 Mar; 71(3):315-326. PubMed ID: 29162334 [TBL] [Abstract][Full Text] [Related]
6. CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Hesselink DA; van Schaik RH; van Agteren M; de Fijter JW; Hartmann A; Zeier M; Budde K; Kuypers DR; Pisarski P; Le Meur Y; Mamelok RD; van Gelder T Pharmacogenet Genomics; 2008 Apr; 18(4):339-48. PubMed ID: 18334918 [TBL] [Abstract][Full Text] [Related]
7. Impact of CYP3A5 genomic variances on clinical outcomes among African American kidney transplant recipients. Asempa TE; Rebellato LM; Hudson S; Briley K; Maldonado AQ Clin Transplant; 2018 Jan; 32(1):. PubMed ID: 29161757 [TBL] [Abstract][Full Text] [Related]
8. Influence of CYP3A5 Genetic Polymorphism on Long-Term Renal Function in Chinese Kidney Transplant Recipients Using Limited Sampling Strategy and Abbreviated Area Under the Curve for Tacrolimus Monitoring. Cheung CY; Chan KM; Wong YT; Chak WL; Bekers O; van Hooff JP Prog Transplant; 2020 Sep; 30(3):249-253. PubMed ID: 32552577 [TBL] [Abstract][Full Text] [Related]
9. Association of Clinical Events With Everolimus Exposure in Kidney Transplant Patients Receiving Low Doses of Tacrolimus. Shihab F; Qazi Y; Mulgaonkar S; McCague K; Patel D; Peddi VR; Shaffer D Am J Transplant; 2017 Sep; 17(9):2363-2371. PubMed ID: 28141897 [TBL] [Abstract][Full Text] [Related]
10. Efficacy and Safety of Everolimus Plus Low-Dose Tacrolimus Versus Mycophenolate Mofetil Plus Standard-Dose Tacrolimus in De Novo Renal Transplant Recipients: 12-Month Data. Qazi Y; Shaffer D; Kaplan B; Kim DY; Luan FL; Peddi VR; Shihab F; Tomlanovich S; Yilmaz S; McCague K; Patel D; Mulgaonkar S Am J Transplant; 2017 May; 17(5):1358-1369. PubMed ID: 27775865 [TBL] [Abstract][Full Text] [Related]
11. Impact of cytochrome P450 3A5 polymorphism in graft livers on the frequency of acute cellular rejection in living-donor liver transplantation. Uesugi M; Kikuchi M; Shinke H; Omura T; Yonezawa A; Matsubara K; Fujimoto Y; Okamoto S; Kaido T; Uemoto S; Masuda S Pharmacogenet Genomics; 2014 Jul; 24(7):356-66. PubMed ID: 24911663 [TBL] [Abstract][Full Text] [Related]
12. Individualization of tacrolimus dosage basing on cytochrome P450 3A5 polymorphism--a prospective, randomized, controlled study. Chen SY; Li JL; Meng FH; Wang XD; Liu T; Li J; Liu LS; Fu Q; Huang M; Wang CX Clin Transplant; 2013; 27(3):E272-81. PubMed ID: 23432535 [TBL] [Abstract][Full Text] [Related]
13. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part II. Staatz CE; Goodman LK; Tett SE Clin Pharmacokinet; 2010 Apr; 49(4):207-21. PubMed ID: 20214406 [TBL] [Abstract][Full Text] [Related]
14. Impact of donor Wheeler C; Masimirembwa C; Mthembu B; Botha J; Scholefield J; Fabian J S Afr Med J; 2024 Apr; 114(3b):e1367. PubMed ID: 39041443 [TBL] [Abstract][Full Text] [Related]
15. CYP3A5 polymorphisms and their effects on tacrolimus exposure in an ethnically diverse South African renal transplant population. Muller WK; Dandara C; Manning K; Mhandire D; Ensor J; Barday Z; Freercks R S Afr Med J; 2020 Jan; 110(2):159-166. PubMed ID: 32657689 [TBL] [Abstract][Full Text] [Related]
16. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Elens L; Bouamar R; Hesselink DA; Haufroid V; van der Heiden IP; van Gelder T; van Schaik RH Clin Chem; 2011 Nov; 57(11):1574-83. PubMed ID: 21903774 [TBL] [Abstract][Full Text] [Related]
17. Effect of CYP3A5 polymorphism on the pharmacokinetics of tacrolimus and acute rejection in renal transplant recipients: experience at a single centre. Cheng Y; Li H; Meng Y; Liu H; Yang L; Xu T; Yu J; Zhao N; Liu Y Int J Clin Pract Suppl; 2015 May; (183):16-22. PubMed ID: 26177012 [TBL] [Abstract][Full Text] [Related]
18. A donor and recipient candidate gene association study of allograft loss in renal transplant recipients receiving a tacrolimus-based regimen. Woillard JB; Gatault P; Picard N; Arnion H; Anglicheau D; Marquet P Am J Transplant; 2018 Dec; 18(12):2905-2913. PubMed ID: 29689130 [TBL] [Abstract][Full Text] [Related]
19. Avoiding Tacrolimus Underexposure and Overexposure with a Dosing Algorithm for Renal Transplant Recipients: A Single Arm Prospective Intervention Trial. Francke MI; Andrews LM; Le HL; van de Wetering J; Clahsen-van Groningen MC; van Gelder T; van Schaik RHN; van der Holt B; de Winter BCM; Hesselink DA Clin Pharmacol Ther; 2021 Jul; 110(1):169-178. PubMed ID: 33452682 [TBL] [Abstract][Full Text] [Related]
20. Therapeutic concentration achievement and allograft survival comparing usage of conventional tacrolimus doses and CYP3A5 genotype-guided doses in renal transplantation patients. Anutrakulchai S; Pongskul C; Kritmetapak K; Limwattananon C; Vannaprasaht S Br J Clin Pharmacol; 2019 Sep; 85(9):1964-1973. PubMed ID: 31077425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]