These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

740 related articles for article (PubMed ID: 26714481)

  • 1. Circlator: automated circularization of genome assemblies using long sequencing reads.
    Hunt M; Silva ND; Otto TD; Parkhill J; Keane JA; Harris SR
    Genome Biol; 2015 Dec; 16():294. PubMed ID: 26714481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing.
    Chen Z; Erickson DL; Meng J
    BMC Genomics; 2020 Sep; 21(1):631. PubMed ID: 32928108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly.
    Koren S; Phillippy AM
    Curr Opin Microbiol; 2015 Feb; 23():110-20. PubMed ID: 25461581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly accurate long reads are crucial for realizing the potential of biodiversity genomics.
    Hotaling S; Wilcox ER; Heckenhauer J; Stewart RJ; Frandsen PB
    BMC Genomics; 2023 Mar; 24(1):117. PubMed ID: 36927511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canu: scalable and accurate long-read assembly via adaptive
    Koren S; Walenz BP; Berlin K; Miller JR; Bergman NH; Phillippy AM
    Genome Res; 2017 May; 27(5):722-736. PubMed ID: 28298431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGAP: an automated gap closing tool.
    Piro VC; Faoro H; Weiss VA; Steffens MB; Pedrosa FO; Souza EM; Raittz RT
    BMC Res Notes; 2014 Jun; 7():371. PubMed ID: 24938749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and accurate de novo genome assembly from long uncorrected reads.
    Vaser R; Sović I; Nagarajan N; Šikić M
    Genome Res; 2017 May; 27(5):737-746. PubMed ID: 28100585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are we there yet? Benchmarking low-coverage nanopore long-read sequencing for the assembling of mitochondrial genomes using the vulnerable silky shark Carcharhinus falciformis.
    Baeza JA; García-De León FJ
    BMC Genomics; 2022 Apr; 23(1):320. PubMed ID: 35459089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Completing Circular Bacterial Genomes With Assembly Complexity by Using a Sampling Strategy From a Single MinION Run With Barcoding.
    Liao YC; Cheng HW; Wu HC; Kuo SC; Lauderdale TY; Chen FJ
    Front Microbiol; 2019; 10():2068. PubMed ID: 31551994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HINGE: long-read assembly achieves optimal repeat resolution.
    Kamath GM; Shomorony I; Xia F; Courtade TA; Tse DN
    Genome Res; 2017 May; 27(5):747-756. PubMed ID: 28320918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads.
    Xu M; Guo L; Gu S; Wang O; Zhang R; Peters BA; Fan G; Liu X; Xu X; Deng L; Zhang Y
    Gigascience; 2020 Sep; 9(9):. PubMed ID: 32893860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses.
    Chen Z; Erickson DL; Meng J
    Genomics; 2021 May; 113(3):1366-1377. PubMed ID: 33716184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing.
    Goldstein S; Beka L; Graf J; Klassen JL
    BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short read fragment assembly of bacterial genomes.
    Chaisson MJ; Pevzner PA
    Genome Res; 2008 Feb; 18(2):324-30. PubMed ID: 18083777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next generation sequencing from Hepatozoon canis (Apicomplexa: Coccidia: Adeleorina): Complete apicoplast genome and multiple mitochondrion-associated sequences.
    Léveillé AN; Baneth G; Barta JR
    Int J Parasitol; 2019 Apr; 49(5):375-387. PubMed ID: 30790556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembling millions of short DNA sequences using SSAKE.
    Warren RL; Sutton GG; Jones SJ; Holt RA
    Bioinformatics; 2007 Feb; 23(4):500-1. PubMed ID: 17158514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing assembly complexity of microbial genomes with single-molecule sequencing.
    Koren S; Harhay GP; Smith TP; Bono JL; Harhay DM; Mcvey SD; Radune D; Bergman NH; Phillippy AM
    Genome Biol; 2013; 14(9):R101. PubMed ID: 24034426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.