These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26714859)

  • 1. Fabrication of Periodic Plasmonic Structures Using Interference Lithography and Chalcogenide Photoresist.
    Dan'ko V; Dmitruk M; Indutnyi I; Mamykin S; Myn'ko V; Lukaniuk M; Shepeliavyi P; Lytvyn P
    Nanoscale Res Lett; 2015 Dec; 10(1):497. PubMed ID: 26714859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Au Gratings Fabricated by Interference Lithography for Experimental Study of Localized and Propagating Surface Plasmons.
    Dan'ko V; Dmitruk M; Indutnyi I; Mamykin S; Myn'ko V; Shepeliavyi P; Lukaniuk M; Lytvyn P
    Nanoscale Res Lett; 2017 Dec; 12(1):190. PubMed ID: 28314356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nanostructuring of surfaces and films using interference lithography and chalcogenide photoresist.
    Dan'ko V; Indutnyi I; Myn'ko V; Lukaniuk M; Shepeliavyi P
    Nanoscale Res Lett; 2015; 10():83. PubMed ID: 25852379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.
    Petefish JW; Hillier AC
    Anal Chem; 2015 Nov; 87(21):10862-70. PubMed ID: 26458177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays.
    Vala M; Homola J
    Opt Express; 2014 Jul; 22(15):18778-89. PubMed ID: 25089495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography.
    Wu J; Geng Z; Xie Y; Fan Z; Su Y; Xu C; Chen H
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30621058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.
    Chen X; Yang F; Zhang C; Zhou J; Guo LJ
    ACS Nano; 2016 Apr; 10(4):4039-45. PubMed ID: 27075440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic films based on colloidal lithography.
    Ai B; Yu Y; Möhwald H; Zhang G; Yang B
    Adv Colloid Interface Sci; 2014 Apr; 206():5-16. PubMed ID: 24321859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraordinary optical transmission in the ultraviolet region through aluminum hole arrays.
    Ekinci Y; Solak HH; David C
    Opt Lett; 2007 Jan; 32(2):172-4. PubMed ID: 17186054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms.
    Liu H; Zhang X; Zhai T
    Opt Express; 2013 Jul; 21(13):15314-22. PubMed ID: 23842318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area surface-plasmon polariton interference lithography.
    Guo X; Du J; Guo Y; Yao J
    Opt Lett; 2006 Sep; 31(17):2613-5. PubMed ID: 16902636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency.
    Oh Y; Lim JW; Kim JG; Wang H; Kang BH; Park YW; Kim H; Jang YJ; Kim J; Kim DH; Ju BK
    ACS Nano; 2016 Nov; 10(11):10143-10151. PubMed ID: 27809471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oblique Colloidal Lithography for the Fabrication of Nonconcentric Features.
    Zhao Z; Cao Y; Cai Y; Yang J; He X; Nordlander P; Cremer PS
    ACS Nano; 2017 Jul; 11(7):6594-6604. PubMed ID: 28704035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips.
    Indutnyi I; Ushenin Y; Hegemann D; Vandenbossche M; Myn'ko V; Lukaniuk M; Shepeliavyi P; Korchovyi A; Khrystosenko R
    Nanoscale Res Lett; 2016 Dec; 11(1):535. PubMed ID: 27910072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale patterning of plasmonic metamaterials.
    Henzie J; Lee MH; Odom TW
    Nat Nanotechnol; 2007 Sep; 2(9):549-54. PubMed ID: 18654366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractometric Sensing with Periodic Nano-Indented Arrays: Effect of Structural Dimensions.
    Carney DJ; Svavarsson HG; Hemmati H; Fannin A; Yoon JW; Magnusson R
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared microlenses and gratings of chalcogenide: confined self-organization in solution processed thin liquid films.
    Sachan P; Singh R; Dwivedi PK; Sharma A
    RSC Adv; 2018 Aug; 8(49):27946-27955. PubMed ID: 35542719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.