BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26715014)

  • 1. From pluripotency to myogenesis: a multistep process in the dish.
    Świerczek B; Ciemerych MA; Archacka K
    J Muscle Res Cell Motil; 2015 Dec; 36(6):363-75. PubMed ID: 26715014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse and human pluripotent stem cells and the means of their myogenic differentiation.
    Grabowska I; Archacka K; Czerwinska AM; Krupa M; Ciemerych MA
    Results Probl Cell Differ; 2012; 55():321-56. PubMed ID: 22918815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making muscle: skeletal myogenesis
    Chal J; Pourquié O
    Development; 2017 Jun; 144(12):2104-2122. PubMed ID: 28634270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human muscle production in vitro from pluripotent stem cells: Basic and clinical applications.
    Yan L; Rodríguez-delaRosa A; Pourquié O
    Semin Cell Dev Biol; 2021 Nov; 119():39-48. PubMed ID: 33941447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the Skeletal Myogenic Lineage in Human Pluripotent Stem Cell-Derived Teratomas.
    Pappas MP; Xie N; Penaloza JS; Chan SSK
    Cells; 2022 May; 11(9):. PubMed ID: 35563894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recapitulating human myogenesis ex vivo using human pluripotent stem cells.
    Chien P; Xi H; Pyle AD
    Exp Cell Res; 2022 Feb; 411(2):112990. PubMed ID: 34973262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of pluripotent stem cells for regenerative medicine.
    Li K; Kong Y; Zhang M; Xie F; Liu P; Xu S
    Biochem Biophys Res Commun; 2016 Feb; 471(1):1-4. PubMed ID: 26851367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Producing Engraftable Skeletal Myogenic Progenitors from Pluripotent Stem Cells via Teratoma Formation.
    Xie N; Chan SSK
    Methods Mol Biol; 2023; 2640():175-189. PubMed ID: 36995595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin 4 Moderately Affects Competence of Pluripotent Stem Cells for Myogenic Conversion.
    Świerczek-Lasek B; Neska J; Kominek A; Tolak Ł; Czajkowski T; Jańczyk-Ilach K; Stremińska W; Piwocka K; Ciemerych MA; Archacka K
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31412558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myogenic progenitor specification from pluripotent stem cells.
    Magli A; Perlingeiro RRC
    Semin Cell Dev Biol; 2017 Dec; 72():87-98. PubMed ID: 29107681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration.
    Shin MK; Bang JS; Lee JE; Tran HD; Park G; Lee DR; Jo J
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myogenic induction of adult and pluripotent stem cells using recombinant proteins.
    Perini I; Elia I; Lo Nigro A; Ronzoni F; Berardi E; Grosemans H; Fukada S; Sampaolesi M
    Biochem Biophys Res Commun; 2015 Aug; 464(3):755-61. PubMed ID: 26164231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of highly pure pluripotent stem cell-derived myogenic progenitor cells and myotubes.
    Bou Akar R; Lama C; Aubin D; Maruotti J; Onteniente B; Esteves de Lima J; Relaix F
    Stem Cell Reports; 2024 Jan; 19(1):84-99. PubMed ID: 38101399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel differentiation of embryonic stem cells into different cell types by a single gene-based differentiation system.
    Thoma EC; Maurus K; Wagner TU; Schartl M
    Cell Reprogram; 2012 Apr; 14(2):106-11. PubMed ID: 22397640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Human Skeletal Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across Development and from Human Pluripotent Stem Cells.
    Xi H; Langerman J; Sabri S; Chien P; Young CS; Younesi S; Hicks M; Gonzalez K; Fujiwara W; Marzi J; Liebscher S; Spencer M; Van Handel B; Evseenko D; Schenke-Layland K; Plath K; Pyle AD
    Cell Stem Cell; 2020 Jul; 27(1):158-176.e10. PubMed ID: 32396864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis.
    Wu J; Yue B
    Biomed Pharmacother; 2024 May; 174():116563. PubMed ID: 38583341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cell cycle and pluripotency.
    Hindley C; Philpott A
    Biochem J; 2013 Apr; 451(2):135-43. PubMed ID: 23535166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Key regulators of skeletal myogenesis].
    Kopantseva EE; Belyavsky AV
    Mol Biol (Mosk); 2016; 50(2):195-222. PubMed ID: 27239841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells.
    Masaki H; Kato-Itoh M; Umino A; Sato H; Hamanaka S; Kobayashi T; Yamaguchi T; Nishimura K; Ohtaka M; Nakanishi M; Nakauchi H
    Development; 2015 Sep; 142(18):3222-30. PubMed ID: 26023098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal myogenesis by human embryonic stem cells.
    Zheng JK; Wang Y; Karandikar A; Wang Q; Gai H; Liu AL; Peng C; Sheng HZ
    Cell Res; 2006 Aug; 16(8):713-22. PubMed ID: 16788572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.