These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26715209)

  • 1. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim.
    Porsa S; Lin YC; Pandy MG
    Ann Biomed Eng; 2016 Aug; 44(8):2542-2557. PubMed ID: 26715209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC; Walter JP; Pandy MG
    Ann Biomed Eng; 2018 Aug; 46(8):1216-1227. PubMed ID: 29671152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
    Lee LF; Umberger BR
    PeerJ; 2016; 4():e1638. PubMed ID: 26835184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem.
    De Groote F; Kinney AL; Rao AV; Fregly BJ
    Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OpenSim Moco: Musculoskeletal optimal control.
    Dembia CL; Bianco NA; Falisse A; Hicks JL; Delp SL
    PLoS Comput Biol; 2020 Dec; 16(12):e1008493. PubMed ID: 33370252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational performance of musculoskeletal simulation in OpenSim Moco using parallel computing.
    Denton AN; Umberger BR
    Int J Numer Method Biomed Eng; 2023 Dec; 39(12):e3777. PubMed ID: 37743768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithmic differentiation improves the computational efficiency of OpenSim-based trajectory optimization of human movement.
    Falisse A; Serrancolí G; Dembia CL; Gillis J; De Groote F
    PLoS One; 2019; 14(10):e0217730. PubMed ID: 31622352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A direct collocation framework for optimal control simulation of pedaling using OpenSim.
    Park S; Caldwell GE; Umberger BR
    PLoS One; 2022; 17(2):e0264346. PubMed ID: 35192643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A; Pandy MG
    J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Predictive Model for Lifting by Integrating Skeletal Motion Prediction With an OpenSim Musculoskeletal Model.
    Zaman R; Xiang Y; Rakshit R; Yang J
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1111-1122. PubMed ID: 34550877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of Inverse Optimization for Functional and Physiological Considerations Related to the Force-Sharing Problem.
    Tsirakos D; Baltzopoulos V; Bartlett R
    Crit Rev Biomed Eng; 2017; 45(1-6):511-547. PubMed ID: 29953387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps.
    Cheng KB; Hubbard M
    J Biomech; 2005 Sep; 38(9):1822-9. PubMed ID: 16023469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices.
    Biess A; Nagurka M; Flash T
    Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics.
    Nitschke M; Dorschky E; Heinrich D; Schlarb H; Eskofier BM; Koelewijn AD; van den Bogert AJ
    Sci Rep; 2020 Oct; 10(1):17655. PubMed ID: 33077752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization-based prediction of asymmetric human gait.
    Xiang Y; Arora JS; Abdel-Malek K
    J Biomech; 2011 Feb; 44(4):683-93. PubMed ID: 21092968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models.
    Halloran JP; Erdemir A; van den Bogert AJ
    J Biomech Eng; 2009 Jan; 131(1):011014. PubMed ID: 19045930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 'cheap' optimal control approach to estimate muscle forces in musculoskeletal systems.
    Menegaldo LL; de Toledo Fleury A; Weber HI
    J Biomech; 2006; 39(10):1787-95. PubMed ID: 16033695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.