BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26715464)

  • 1. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements).
    Choi JW; Yim SS; Kim MJ; Jeong KJ
    Microb Cell Fact; 2015 Dec; 14():207. PubMed ID: 26715464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum.
    Shi F; Zhang M; Li Y
    World J Microbiol Biotechnol; 2017 Jun; 33(6):122. PubMed ID: 28534111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing recombinant protein production with an Escherichia coli host strain lacking insertion sequences.
    Park MK; Lee SH; Yang KS; Jung SC; Lee JH; Kim SC
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6701-13. PubMed ID: 24752842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum.
    Choi JW; Yim SS; Jeong KJ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):873-883. PubMed ID: 29177939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum.
    Yim SS; Choi JW; Lee RJ; Lee YJ; Lee SH; Kim SY; Jeong KJ
    Biotechnol Bioeng; 2016 Jan; 113(1):163-72. PubMed ID: 26134574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial production of L -glutamate and L -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb.
    Liu Q; Zhang J; Wei XX; Ouyang SP; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1297-304. PubMed ID: 18040683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
    Schneider J; Eberhardt D; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a gene involved in plasmid structural instability in Corynebacterium glutamicum.
    Kitade Y; Okino S; Gunji W; Hiraga K; Suda M; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8219-26. PubMed ID: 23703324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved pEKEx2-derived expression vectors for tightly controlled production of recombinant proteins in Corynebacterium glutamicum.
    Bakkes PJ; Ramp P; Bida A; Dohmen-Olma D; Bott M; Freudl R
    Plasmid; 2020 Nov; 112():102540. PubMed ID: 32991924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications.
    Liu X; Yang Y; Zhang W; Sun Y; Peng F; Jeffrey L; Harvey L; McNeil B; Bai Z
    Crit Rev Biotechnol; 2016 Aug; 36(4):652-64. PubMed ID: 25714007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a Sec signal peptide library from Bacillus subtilis for the optimization of cutinase secretion in Corynebacterium glutamicum.
    Hemmerich J; Rohe P; Kleine B; Jurischka S; Wiechert W; Freudl R; Oldiges M
    Microb Cell Fact; 2016 Dec; 15(1):208. PubMed ID: 27927208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum.
    Wang N; Ni Y; Shi F
    Biotechnol Lett; 2015 Jul; 37(7):1473-81. PubMed ID: 25801673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of pOGOduet - An inducible, bicistronic vector for synthesis of recombinant proteins in Corynebacterium glutamicum.
    Goldbeck O; Seibold GM
    Plasmid; 2018 Jan; 95():11-15. PubMed ID: 29331350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of an IS-Free
    Linder M; Haak M; Botes A; Kalinowski J; Rückert C
    Front Bioeng Biotechnol; 2021; 9():751334. PubMed ID: 34976962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of SigB inactivation on Corynebacterium glutamicum protein secretion.
    Watanabe K; Teramoto H; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4917-26. PubMed ID: 23179627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling.
    Hüser AT; Chassagnole C; Lindley ND; Merkamm M; Guyonvarch A; Elisáková V; Pátek M; Kalinowski J; Brune I; Pühler A; Tauch A
    Appl Environ Microbiol; 2005 Jun; 71(6):3255-68. PubMed ID: 15933028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of poly(3-hydroxybutyrate) [P(3HB)] production in Corynebacterium glutamicum by codon optimization, point mutation and gene dosage of P(3HB) biosynthetic genes.
    Jo SJ; Matsumoto K; Leong CR; Ooi T; Taguchi S
    J Biosci Bioeng; 2007 Dec; 104(6):457-63. PubMed ID: 18215631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose.
    Jorge JM; Leggewie C; Wendisch VF
    Amino Acids; 2016 Nov; 48(11):2519-2531. PubMed ID: 27289384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.