These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26715542)

  • 41. Coexistence of predator and prey in intraguild predation systems with ontogenetic niche shifts.
    Hin V; Schellekens T; Persson L; de Roos AM
    Am Nat; 2011 Dec; 178(6):701-14. PubMed ID: 22089866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ricoseius loxocheles, a phytoseiid mite that feeds on coffee leaf rust.
    Oliveira CM; Ferreira JA; Oliveira RM; Santos FO; Pallini A
    Exp Appl Acarol; 2014 Oct; 64(2):223-33. PubMed ID: 24744058
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prey, predators, parasites: intraguild predation or simpler community modules in disguise?
    Sieber M; Hilker FM
    J Anim Ecol; 2011 Mar; 80(2):414-21. PubMed ID: 21182521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of supplemental foods and habitat structural complexity in persistence and coexistence of generalist predatory mites.
    Pozzebon A; Loeb GM; Duso C
    Sci Rep; 2015 Oct; 5():14997. PubMed ID: 26450810
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rearing system for the predatory phytoseiid Euseius concordis (Acari: Phytoseiidae).
    de Figueiredo ES; Massaro M; do Carmo S; de Moraes GJ
    Exp Appl Acarol; 2018 Jan; 74(1):13-23. PubMed ID: 29374843
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites.
    Walzer A; Schausberger P
    Behaviour; 2013 Feb; 150(2):115-132. PubMed ID: 23750040
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The ubiquity of intraguild predation among predatory arthropods.
    Gagnon AÈ; Heimpel GE; Brodeur J
    PLoS One; 2011; 6(11):e28061. PubMed ID: 22132211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predators induce egg retention in prey.
    Montserrat M; Bas C; Magalhães S; Sabelis MW; de Roos AM; Janssen A
    Oecologia; 2007 Jan; 150(4):699-705. PubMed ID: 16955289
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive and variable intraguild predators facilitate local coexistence in an intraguild predation module.
    Wu SH; Okuyama T
    BMC Ecol; 2012 May; 12():6. PubMed ID: 22626442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Persimmon orchards harbor an abundant and well-established predatory mite fauna.
    García-Martínez FO; Urbaneja A; Ferragut F; Beitia FJ; Pérez-Hedo M
    Exp Appl Acarol; 2019 Feb; 77(2):145-159. PubMed ID: 30820790
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites.
    Seiter M; Schausberger P
    Sci Rep; 2015 Oct; 5():15046. PubMed ID: 26449645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Current Status of Phytoseiid Mites as Biological Control Agents in Latin America and Experiences from Argentina Using Neoseiulus californicus.
    Vásquez C; Colmenárez YC; Greco N; Ramos M
    Neotrop Entomol; 2023 Apr; 52(2):240-250. PubMed ID: 36811713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Do intraspecific or interspecific interactions determine responses to predators feeding on a shared size-structured prey community?
    ten Brink H; Mazumdar AK; Huddart J; Persson L; Cameron TC
    J Anim Ecol; 2015 Mar; 84(2):414-26. PubMed ID: 25314614
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intra-guild predation (IGP) can increase or decrease prey density depending on the strength of IGP.
    Chang FH; Cardinale BJ
    Ecology; 2020 Jul; 101(7):e03012. PubMed ID: 32065659
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytoseiid predators as potential biological control agents for Bemisia tabaci.
    Nomikou M; Janssen A; Schraag R; Sabelis MW
    Exp Appl Acarol; 2001; 25(4):271-91. PubMed ID: 11603735
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compatibility of Neoseiulus paspalivorus and Proctolaelaps bickleyi, candidate biocontrol agents of the coconut mite Aceria guerreronis: spatial niche use and intraguild predation.
    Lawson-Balagbo LM; Gondim MG; de Moraes GJ; Hanna R; Schausberger P
    Exp Appl Acarol; 2008 Jun; 45(1-2):1-13. PubMed ID: 18483789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Productivity, dispersal and the coexistence of intraguild predators and prey.
    Amarasekare P
    J Theor Biol; 2006 Nov; 243(1):121-33. PubMed ID: 16860826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size?
    Rosenheim JA; Limburg DD; Colfer RG; Fournier V; Hsu CL; Leonardo TE; Nelson EH
    Oecologia; 2004 Aug; 140(4):577-85. PubMed ID: 15278424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of enhanced productivity of resources shared by predators in a food-web module: Comparing results of a field experiment to predictions of mathematical models of intra-guild predation.
    Wise DH; Farfan MA
    Ecol Evol; 2021 Dec; 11(23):17417-17427. PubMed ID: 34938518
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trade-offs, temporal variation, and species coexistence in communities with intraguild predation.
    Amarasekare P
    Ecology; 2007 Nov; 88(11):2720-8. PubMed ID: 18051639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.