These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26715542)

  • 61. Factitious food for mass production of predaceous phytoseiid mites (Acari: Phytoseiidae) commonly found in Brazil.
    Massaro M; Martin JP; de Moraes GJ
    Exp Appl Acarol; 2016 Dec; 70(4):411-420. PubMed ID: 27631763
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Artificial ground shelters for overwintering phytoseiid mites in orchards.
    Kawashima M; Jung C
    Exp Appl Acarol; 2010 Sep; 52(1):35-47. PubMed ID: 20229324
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Predatory mites (Acari: Mesostigmata: Phytoseiidae) intercepted from samples imported to Taiwan, with description of a new species.
    Liao JR; Ho CC; Ko CC
    Zootaxa; 2021 Feb; 4927(3):zootaxa.4927.3.1. PubMed ID: 33756698
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Abiotic conditions mediate intraguild interactions between mammalian carnivores.
    Jensen PG; Humphries MM
    J Anim Ecol; 2019 Sep; 88(9):1305-1318. PubMed ID: 31236935
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-quality alternative food reduces cannibalism in the predatory mite Amblyseius herbicolus (Acari: Phytoseiidae).
    Marcossi Í; Fonseca MM; Carbajal PAF; Cardoso A; Pallini A; Janssen A
    Exp Appl Acarol; 2020 Jun; 81(2):189-200. PubMed ID: 32419095
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cannibalism among phytoseiid mites: a review.
    Schausberger P
    Exp Appl Acarol; 2003; 29(3-4):173-91. PubMed ID: 14635807
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Population growth and predation interference between two species of predatory phytoseiid mites (Acarina: Phytoseiidae) in interactive systems.
    Yao DS; Chant DA
    Oecologia; 1989 Sep; 80(4):443-455. PubMed ID: 28312827
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Population survey of phytoseiid mites and spider mites on peach leaves and wild plants in Japanese peach orchard.
    Wari D; Yamashita J; Kataoka Y; Kohara Y; Hinomoto N; Kishimoto H; Toyoshima S; Sonoda S
    Exp Appl Acarol; 2014 Jul; 63(3):313-32. PubMed ID: 24659516
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Temperature dependency of intraguild predation between native and invasive crabs.
    Rogers TL; Gouhier TC; Kimbro DL
    Ecology; 2018 Apr; 99(4):885-895. PubMed ID: 29352463
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effects of prey patchiness, predator aggregation, and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae).
    Nachman G
    Exp Appl Acarol; 2006; 38(2-3):87-111. PubMed ID: 16596345
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Warming drives higher rates of prey consumption and increases rates of intraguild predation.
    Frances DN; McCauley SJ
    Oecologia; 2018 Jul; 187(3):585-596. PubMed ID: 29687229
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evidence of Amblyseius largoensis and Euseius alatus as biological control agent of Aceria guerreronis.
    Melo JW; Lima DB; Staudacher H; Silva FR; Gondim MG; Sabelis MW
    Exp Appl Acarol; 2015 Nov; 67(3):411-21. PubMed ID: 26255279
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reciprocal intraguild predation and predator coexistence.
    Marques RV; Sarmento RA; Oliveira AG; Rodrigues DM; Venzon M; Pedro-Neto M; Pallini A; Janssen A
    Ecol Evol; 2018 Jul; 8(14):6952-6964. PubMed ID: 30073058
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web.
    Davenport JM; Chalcraft DR
    J Anim Ecol; 2012 Jan; 81(1):242-50. PubMed ID: 21950407
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Habitat complexity does not promote coexistence in a size-structured intraguild predation system.
    Reichstein B; Schröder A; Persson L; De Roos AM
    J Anim Ecol; 2013 Jan; 82(1):55-63. PubMed ID: 23004014
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Intraguild predation in the presence of a shared natural enemy.
    Hall RJ
    Ecology; 2011 Feb; 92(2):352-61. PubMed ID: 21618915
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparative life-history traits of three phytoseiid mites associated with Tetranychus urticae (Acari: Tetranychidae) colonies in clementine orchards in eastern Spain: implications for biological control.
    Abad-Moyano R; Pina T; Ferragut F; Urbaneja A
    Exp Appl Acarol; 2009 Feb; 47(2):121-32. PubMed ID: 18931925
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Order of invasion affects the spatial distribution of a reciprocal intraguild predator.
    van der Hammen T; de Roos AM; Sabelis MW; Janssen A
    Oecologia; 2010 May; 163(1):79-89. PubMed ID: 20169453
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Relations Between Predatory Fungus and Its Rotifer Preys as a Noteworthy Example of Intraguild Predation (IGP).
    Fiałkowska E; Fiałkowski W; Pajdak-Stós A
    Microb Ecol; 2020 Jan; 79(1):73-83. PubMed ID: 31236611
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Infochemical-mediated intraguild interactions among three predatory mites on cassava plants.
    Gnanvossou D; Hanna R; Dicke M
    Oecologia; 2003 Mar; 135(1):84-90. PubMed ID: 12647107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.