BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26715562)

  • 1. A novel cinnamyl alcohol dehydrogenase (CAD)-like reductase contributes to the structural diversity of monoterpenoid indole alkaloids in Rauvolfia.
    Geissler M; Burghard M; Volk J; Staniek A; Warzecha H
    Planta; 2016 Mar; 243(3):813-24. PubMed ID: 26715562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rauvolfia serpentina N-methyltransferases involved in ajmaline and Nβ -methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase.
    Cázares-Flores P; Levac D; De Luca V
    Plant J; 2016 Aug; 87(4):335-42. PubMed ID: 27122470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vomilenine reductase--a novel enzyme catalyzing a crucial step in the biosynthesis of the therapeutically applied antiarrhythmic alkaloid ajmaline.
    von Schumann G; Gao S; Stöckigt J
    Bioorg Med Chem; 2002 Jun; 10(6):1913-8. PubMed ID: 11937349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia.
    Sun L; Ruppert M; Sheludko Y; Warzecha H; Zhao Y; Stöckigt J
    Plant Mol Biol; 2008 Jul; 67(5):455-67. PubMed ID: 18409028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the Diversity of Plant Monoterpenoid Indole Alkaloids Employing Human Cytochrome P450 3A4.
    Sheludko YV; Volk J; Brandt W; Warzecha H
    Chembiochem; 2020 Jul; 21(14):1976-1980. PubMed ID: 32181956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial localization of monoterpenoid indole alkaloids in Rauvolfia tetraphylla by high resolution mass spectrometry imaging.
    Lorensen MDBB; Bjarnholt N; St-Pierre B; Heinicke S; Courdavault V; O'Connor S; Janfelt C
    Phytochemistry; 2023 May; 209():113620. PubMed ID: 36863602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and expression of a dual vector for chemo-enzymatic synthesis of plant indole alkaloids in Escherichia coli.
    Stockigt J; Hammes B; Ruppert M
    Nat Prod Res; 2010 May; 24(8):759-66. PubMed ID: 20432158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids.
    Levac D; Cázares P; Yu F; De Luca V
    Plant Physiol; 2016 Apr; 170(4):1935-44. PubMed ID: 26848097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family.
    Barleben L; Panjikar S; Ruppert M; Koepke J; Stöckigt J
    Plant Cell; 2007 Sep; 19(9):2886-97. PubMed ID: 17890378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis.
    Warzecha H; Gerasimenko I; Kutchan TM; Stöckigt J
    Phytochemistry; 2000 Aug; 54(7):657-66. PubMed ID: 10975500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarpagan-Ajmalan-Type Indoles: Biosynthesis, Structural Biology, and Chemo-Enzymatic Significance.
    Wu F; Kerčmar P; Zhang C; Stöckigt J
    Alkaloids Chem Biol; 2016; 76():1-61. PubMed ID: 26827882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnological interventions and indole alkaloid production in Rauvolfia serpentina.
    Dey A; Roy D; Mohture VM; Ghorai M; Rahman MH; Anand U; Dewanjee S; Radha ; Kumar M; Prasanth DA; Jha NK; Jha SK; Shekhawat MS; Pandey DK
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):4867-4883. PubMed ID: 35819514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids.
    Gerasimenko I; Sheludko Y; Ma X; Stöckigt J
    Eur J Biochem; 2002 Apr; 269(8):2204-13. PubMed ID: 11985599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UPLC and ESI-MS analysis of metabolites of Rauvolfia tetraphylla L. and their spatial localization using desorption electrospray ionization (DESI) mass spectrometric imaging.
    Mohana Kumara P; Uma Shaanker R; Pradeep T
    Phytochemistry; 2019 Mar; 159():20-29. PubMed ID: 30562679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and biochemical characterization of a benzenoid/phenylpropanoid meta/para-O-methyltransferase from Rauwolfia serpentina roots.
    Wiens B; De Luca V
    Phytochemistry; 2016 Dec; 132():5-15. PubMed ID: 27771009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tabersonine 3-reductase Catharanthus roseus mutant accumulates vindoline pathway intermediates.
    Edge A; Qu Y; Easson MLAE; Thamm AMK; Kim KH; De Luca V
    Planta; 2018 Jan; 247(1):155-169. PubMed ID: 28894945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo biosynthesis of antiarrhythmic alkaloid ajmaline.
    Guo J; Gao D; Lian J; Qu Y
    Nat Commun; 2024 Jan; 15(1):457. PubMed ID: 38212296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and functional analysis of monoterpenoid indole alkaloid pathways in plants.
    De Luca V; Salim V; Levac D; Atsumi SM; Yu F
    Methods Enzymol; 2012; 515():207-29. PubMed ID: 22999176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetyltransfer in natural product biosynthesis--functional cloning and molecular analysis of vinorine synthase.
    Bayer A; Ma X; Stöckigt J
    Bioorg Med Chem; 2004 May; 12(10):2787-95. PubMed ID: 15110860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New alkaloids of the sarpagine group from Rauvolfia serpentina hairy root culture.
    Sheludko Y; Gerasimenko I; Kolshorn H; Stöckigt J
    J Nat Prod; 2002 Jul; 65(7):1006-10. PubMed ID: 12141861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.