These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Fast imputation using medium or low-coverage sequence data. VanRaden PM; Sun C; O'Connell JR BMC Genet; 2015 Jul; 16():82. PubMed ID: 26168789 [TBL] [Abstract][Full Text] [Related]
4. Accurate Genotype Imputation in Multiparental Populations from Low-Coverage Sequence. Zheng C; Boer MP; van Eeuwijk FA Genetics; 2018 Sep; 210(1):71-82. PubMed ID: 30045858 [TBL] [Abstract][Full Text] [Related]
5. IMPUTOR: Phylogenetically Aware Software for Imputation of Errors in Next-Generation Sequencing. Jobin M; Schurz H; Henn BM Genome Biol Evol; 2018 Apr; 10(5):1248-1254. PubMed ID: 29722813 [TBL] [Abstract][Full Text] [Related]
6. Accounting for Errors in Low Coverage High-Throughput Sequencing Data When Constructing Genetic Maps Using Biparental Outcrossed Populations. Bilton TP; Schofield MR; Black MA; Chagné D; Wilcox PL; Dodds KG Genetics; 2018 May; 209(1):65-76. PubMed ID: 29487138 [TBL] [Abstract][Full Text] [Related]
7. Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans. Xavier A; Muir WM; Rainey KM BMC Bioinformatics; 2016 Feb; 17():55. PubMed ID: 26830693 [TBL] [Abstract][Full Text] [Related]
8. A comprehensive evaluation of SNP genotype imputation. Nothnagel M; Ellinghaus D; Schreiber S; Krawczak M; Franke A Hum Genet; 2009 Mar; 125(2):163-71. PubMed ID: 19089453 [TBL] [Abstract][Full Text] [Related]
9. Molgenis-impute: imputation pipeline in a box. Kanterakis A; Deelen P; van Dijk F; Byelas H; Dijkstra M; Swertz MA BMC Res Notes; 2015 Aug; 8():359. PubMed ID: 26286716 [TBL] [Abstract][Full Text] [Related]
10. Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence. Bian J; Zhou X Methods Mol Biol; 2017; 1552():123-133. PubMed ID: 28224495 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of genotype imputation in sheep breeds. Hayes BJ; Bowman PJ; Daetwyler HD; Kijas JW; van der Werf JH Anim Genet; 2012 Feb; 43(1):72-80. PubMed ID: 22221027 [TBL] [Abstract][Full Text] [Related]
12. Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm. Lucas-Lledó JI; Vicente-Salvador D; Aguado C; Cáceres M BMC Bioinformatics; 2014 May; 15():163. PubMed ID: 24884587 [TBL] [Abstract][Full Text] [Related]
13. Genotype-Corrector: improved genotype calls for genetic mapping in F Miao C; Fang J; Li D; Liang P; Zhang X; Yang J; Schnable JC; Tang H Sci Rep; 2018 Jul; 8(1):10088. PubMed ID: 29973633 [TBL] [Abstract][Full Text] [Related]
14. Highly Accurate and Efficient Data-Driven Methods for Genotype Imputation. Choudhury O; Chakrabarty A; Emrich SJ IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1107-1116. PubMed ID: 28574365 [TBL] [Abstract][Full Text] [Related]
15. FISH: fast and accurate diploid genotype imputation via segmental hidden Markov model. Zhang L; Pei YF; Fu X; Lin Y; Wang YP; Deng HW Bioinformatics; 2014 Jul; 30(13):1876-83. PubMed ID: 24618466 [TBL] [Abstract][Full Text] [Related]
16. A hidden Markov approach for ascertaining cSNP genotypes from RNA sequence data in the presence of allelic imbalance by exploiting linkage disequilibrium. Steibel JP; Wang H; Zhong PS BMC Bioinformatics; 2015 Feb; 16():61. PubMed ID: 25887316 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide association study based on multiple imputation with low-depth sequencing data: application to biofuel traits in reed canarygrass. Ramstein GP; Lipka AE; Lu F; Costich DE; Cherney JH; Buckler ES; Casler MD G3 (Bethesda); 2015 Mar; 5(5):891-909. PubMed ID: 25770100 [TBL] [Abstract][Full Text] [Related]
18. Comparison among three variant callers and assessment of the accuracy of imputation from SNP array data to whole-genome sequence level in chicken. Ni G; Strom TM; Pausch H; Reimer C; Preisinger R; Simianer H; Erbe M BMC Genomics; 2015 Oct; 16():824. PubMed ID: 26486989 [TBL] [Abstract][Full Text] [Related]
19. Best practices for genotype imputation from low-coverage sequencing data in natural populations. Watowich MM; Chiou KL; Graves B; Montague MJ; Brent LJN; Higham JP; Horvath JE; Lu A; Martinez MI; Platt ML; Schneider-Crease IA; Lea AJ; Snyder-Mackler N Mol Ecol Resour; 2023 Aug; ():. PubMed ID: 37602981 [TBL] [Abstract][Full Text] [Related]
20. Application of Population Sequencing (POPSEQ) for Ordering and Imputing Genotyping-by-Sequencing Markers in Hexaploid Wheat. Edae EA; Bowden RL; Poland J G3 (Bethesda); 2015 Nov; 5(12):2547-53. PubMed ID: 26530417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]