These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 2671606)

  • 1. Effects of temperature on active amino acid transport in Escherichia coli strain 7.
    Eze MO; McElhaney RN
    Microbios; 1989; 58(236-237):173-82. PubMed ID: 2671606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid and temperature dependence of the kinetic and thermodynamic parameters for active amino acid transport in Escherichia coli K1060.
    Eze MO; McElhaney RN
    Biochim Biophys Acta; 1987 Feb; 897(1):159-68. PubMed ID: 3542046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspartate 55 in the Na+/proline permease of Escherichia coli is essential for Na+-coupled proline uptake.
    Quick M; Jung H
    Biochemistry; 1997 Apr; 36(15):4631-6. PubMed ID: 9109673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinic acid transport in Escherichia coli.
    Rowe JJ; Lemmon RD; Tritz GJ
    Microbios; 1985; 44(179-180):169-84. PubMed ID: 2939322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics underlying the process of long-chain fatty acid transport.
    Azizan A; Sherin D; DiRusso CC; Black PN
    Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of glutamine transport in bovine lymphocytes.
    Piva TJ; McCabe MG; McEvoy-Bowe E
    Biochem Int; 1992 Feb; 26(2):309-16. PubMed ID: 1558543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved aspartate residue, Asp187, is important for Na+-dependent proline binding and transport by the Na+/proline transporter of Escherichia coli.
    Quick M; Jung H
    Biochemistry; 1998 Sep; 37(39):13800-6. PubMed ID: 9753469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of L-glutamine transport in equine jejunal brush border membrane vesicles.
    Salloum RM; Duckworth D; Madison JB; Souba WW
    Am J Vet Res; 1993 Jan; 54(1):152-7. PubMed ID: 8427460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic Na(+)-independent amino acid transport in endotoxemic rats: evidence for selective stimulation of arginine transport.
    Inoue Y; Bode BP; Souba WW
    Shock; 1994 Sep; 2(3):164-72. PubMed ID: 7743345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of the apparent affinity and the maximum velocity of the membrane-bound monosaccharide transport system in the yeast Rhodotorula gracilis.
    Heller KB; Höfer M
    Biochim Biophys Acta; 1978 Dec; 514(1):172-7. PubMed ID: 568938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular organization of lipids in the membrane of Escherichia coli: phase transitions.
    Esfahani M; Limbrick AR; Knutton S; Oka T; Wakil SJ
    Proc Natl Acad Sci U S A; 1971 Dec; 68(12):3180-4. PubMed ID: 4943559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering analysis of continuous production of L-aspartic acid by immobilized Escherichia coli cells in fixed beds.
    Sato T; Mori T; Tosa T; Chibata I; Furui M
    Biotechnol Bioeng; 1975 Dec; 17(12):1797-1804. PubMed ID: 1106792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-affinity transport of L-glutamine by a plasma membrane preparation from rat brain.
    Roon RJ; Shofner SA; Koerner JF
    Biochemistry; 1989 Oct; 28(20):8083-7. PubMed ID: 2605174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proline transport activity in Escherichia coli membrane vesicles of different buoyant densities.
    van Heerikhuizen H; Boekhout M; Witholt B
    Biochim Biophys Acta; 1977 Nov; 470(3):453-64. PubMed ID: 336091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Structure of an Escherichia coli bacterial suspension].
    Kakorin SA; Rovnov NV; Rybal'chenko OV; Sorvin SV; Trusov AA
    Biofizika; 1991; 36(6):1043-7. PubMed ID: 1809382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition by levorphanol and related drugs of amino acid transport by isolated membrane vesicles from Escherichia coli.
    Holland MJ; Simon EJ
    Antimicrob Agents Chemother; 1975 May; 7(5):530-7. PubMed ID: 1096802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of proline transport in Escherichia coli K12. I. Effect of a membrane potential on the kinetics of 2H+/proline symport in cytoplasmic membrane vesicles.
    Mogi T; Anraku Y
    J Biol Chem; 1984 Jun; 259(12):7791-6. PubMed ID: 6376492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotransport of proline and Li+ in Escherichia coli.
    Tsuchiya T; Yamane Y; Shiota S; Kawasaki T
    FEBS Lett; 1984 Mar; 168(2):327-30. PubMed ID: 6327369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic interpretation of the influence of lipid phase transitions on transport functions.
    Thilo L; Träuble H; Overath P
    Biochemistry; 1977 Apr; 16(7):1283-90. PubMed ID: 321017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reconstitution of binding protein-dependent active transport of glutamine in isolated membrane vesicles from Escherichia coli.
    Hunt AG; Hong J
    J Biol Chem; 1981 Dec; 256(23):11988-91. PubMed ID: 7028748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.