These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26716240)

  • 1. Preparation of Cellulose Nanofibrils from Bamboo Pulp by Mechanical Defibrillation for Their Applications in Biodegradable Composites.
    Guimarães M; Botaro VR; Novack KM; Neto WP; Mendes LM; Tonoli GH
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6751-68. PubMed ID: 26716240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties.
    Tonoli GH; Teixeira EM; Corrêa AC; Marconcini JM; Caixeta LA; Pereira-da-Silva MA; Mattoso LH
    Carbohydr Polym; 2012 Jun; 89(1):80-8. PubMed ID: 24750607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining.
    Berto GL; Arantes V
    Int J Biol Macromol; 2019 Apr; 127():637-648. PubMed ID: 30708005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano.
    Karimi S; Tahir PM; Karimi A; Dufresne A; Abdulkhani A
    Carbohydr Polym; 2014 Jan; 101():878-85. PubMed ID: 24299851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
    Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S
    Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: Transition of cellulose crystal structure.
    Tao P; Zhang Y; Wu Z; Liao X; Nie S
    Carbohydr Polym; 2019 Jun; 214():1-7. PubMed ID: 30925976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties.
    Pakutsah K; Aht-Ong D
    Int J Biol Macromol; 2020 Feb; 145():64-76. PubMed ID: 31874270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Unbleached Rice Straw Cellulose Nanofibers on the Properties of Polysulfone Membranes.
    Hassan M; Zeid REA; Abou-Elseoud WS; Hassan E; Berglund L; Oksman K
    Polymers (Basel); 2019 May; 11(6):. PubMed ID: 31146496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents.
    Lu Y; Tao P; Zhang N; Nie S
    Carbohydr Polym; 2020 Oct; 245():116463. PubMed ID: 32718602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Treatment for Upgrading Bleached Bamboo Pulp to Dissolving Pulp High Solvency in Green Alkali/Urea Aqueous Solution.
    Shang JP; Liang P; Peng Y; Xu DF; Li YB
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-production of xylo-oligosaccharides, xylose and cellulose nanofibrils from sugarcane bagasse.
    Marcondes WF; Milagres AMF; Arantes V
    J Biotechnol; 2020 Sep; 321():35-47. PubMed ID: 32622841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular bonding characteristics of Self-plasticized bamboo composites.
    Xue Q; Peng W; Ohkoshi M
    Pak J Pharm Sci; 2014 Jul; 27(4 Suppl):975-82. PubMed ID: 25016255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films.
    Wu J; Du X; Yin Z; Xu S; Xu S; Zhang Y
    Carbohydr Polym; 2019 May; 211():49-56. PubMed ID: 30824103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp.
    Zhao L; Yuan Z; Kapu NS; Chang XF; Beatson R; Trajano HL; Martinez DM
    Bioresour Technol; 2017 Jan; 223():40-46. PubMed ID: 27788428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose hydrogel development from unbleached oil palm biomass pulps for dermal drug delivery.
    Wong LC; Poh JH; Tan WT; Khor BK; Murugaiyah V; Leh CP; Goh CF
    Int J Biol Macromol; 2023 Jan; 224():483-495. PubMed ID: 36273545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment.
    Ahuja D; Kaushik A; Singh M
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1294-1301. PubMed ID: 28964841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water purification ultrafiltration membranes using nanofibers from unbleached and bleached rice straw.
    Hassan ML; Fadel SM; Abouzeid RE; Abou Elseoud WS; Hassan EA; Berglund L; Oksman K
    Sci Rep; 2020 Jul; 10(1):11278. PubMed ID: 32647119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Bleached and Unbleached Nanofibers from Pistachio Shells for Nanopaper Making.
    Robles E; Izaguirre N; Martin A; Moschou D; Labidi J
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-insoluble dietary fibers from bamboo shoot used as plant food particles for the stabilization of O/W Pickering emulsion.
    He K; Li Q; Li Y; Li B; Liu S
    Food Chem; 2020 Apr; 310():125925. PubMed ID: 31865174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.