BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26716264)

  • 1. Hydrothermal Synthesis of Nanostructured MnO2 and Gamma Radiation Effects on Rechargeable Lithium Battery Performance.
    Seo SE; Kang YO; Jung SH; Choi SH
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6924-30. PubMed ID: 26716264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery.
    Feng L; Xuan Z; Zhao H; Bai Y; Guo J; Su CW; Chen X
    Nanoscale Res Lett; 2014; 9(1):290. PubMed ID: 24982603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage.
    He W; Yang W; Wang C; Deng X; Liu B; Xu X
    Phys Chem Chem Phys; 2016 Jun; 18(22):15235-43. PubMed ID: 27211207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Porous δ-MnO2 Submicron Tubes as Highly Efficient Electrocatalyst for Rechargeable Li-O2 Batteries.
    Zhang P; Sun D; He M; Lang J; Xu S; Yan X
    ChemSusChem; 2015 Jun; 8(11):1972-9. PubMed ID: 25944388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.
    Chen Y; Qin W; Fan R; Wang J; Chen B
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9760-5. PubMed ID: 26682409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of hierarchical mesoporous weirds-like morphological MnO
    Shinde PA; Lokhande VC; Ji T; Lokhande CD
    J Colloid Interface Sci; 2017 Jul; 498():202-209. PubMed ID: 28324726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries.
    Li B; Rong G; Xie Y; Huang L; Feng C
    Inorg Chem; 2006 Aug; 45(16):6404-10. PubMed ID: 16878952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterizations of MnO2/multi-wall carbon nanotubes nanocomposites for lithium-air battery.
    Eom HR; Kim MK; Kim MS; Kim GP; Baeck SH
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1780-3. PubMed ID: 23755590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries.
    Cheng F; Zhao J; Song W; Li C; Ma H; Chen J; Shen P
    Inorg Chem; 2006 Mar; 45(5):2038-44. PubMed ID: 16499364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elaboration of Lamellar and Nanostructured Materials Based on Manganese: Efficient Adsorbents for Removing Heavy Metals.
    Amarray A; El Ghachtouli S; Himi MA; Aqil M; Khaless K; Brahmi Y; Dahbi M; Azzi M
    Acta Chim Slov; 2020 Dec; 67(4):1180-1195. PubMed ID: 33533446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal Synthesis of MnO
    Lu M; Ma Y; Li D; Jiang M; Yu C
    ACS Omega; 2023 Dec; 8(51):49150-49157. PubMed ID: 38162731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling application of Li-MnO₂ batteries as rechargeable lithium-air batteries.
    Hu Y; Zhang T; Cheng F; Zhao Q; Han X; Chen J
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4338-43. PubMed ID: 25678148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MnO2 Nano-Urchin/Graphene Hybrid Electrodes: Facile Synthesis and Enhanced Supercapacitance Performance.
    Wang Y; Zhou QM; Huang Z; Tang JG; Jiao JQ; Wang YX; Liu JX; Huang LJ; Belfiore LA
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9892-8. PubMed ID: 26682431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries.
    Zhang J; Luan Y; Lyu Z; Wang L; Xu L; Yuan K; Pan F; Lai M; Liu Z; Chen W
    Nanoscale; 2015 Sep; 7(36):14881-8. PubMed ID: 26290962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled Microspheres Formed from α-MnO2 Nanotubes as an Anode Material for Rechargeable Lithium-Ion Batteries.
    Jan SS; Nurgul S; Shi X; Xia H
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7181-5. PubMed ID: 26716307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury.
    Xu H; Qu Z; Zhao S; Mei J; Quan F; Yan N
    J Hazard Mater; 2015 Dec; 299():86-93. PubMed ID: 26093358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bouquet-Like Mn
    Rehman WU; Xu Y; Sun X; Ullah I; Zhang Y; Li L
    ACS Appl Mater Interfaces; 2018 May; 10(21):17963-17972. PubMed ID: 29737833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable synthesis of hollow bipyramid β-MnO(2) and its high electrochemical performance for lithium storage.
    Chen WM; Qie L; Shao QG; Yuan LX; Zhang WX; Huang YH
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3047-53. PubMed ID: 22658801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance supercapacitor applications.
    Venkateswarlu P; Umeshbabu E; Naveen Kumar U; Nagaraja P; Tirupathi P; Ranga Rao G; Justin P
    J Colloid Interface Sci; 2017 Oct; 503():17-27. PubMed ID: 28500936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities.
    Zhang N; Cheng F; Liu J; Wang L; Long X; Liu X; Li F; Chen J
    Nat Commun; 2017 Sep; 8(1):405. PubMed ID: 28864823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.