These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26716305)

  • 1. Cs(x)WO3 Nanoparticles for the Near-Infrared Shielding Film.
    Zhao Z; Yin S; Guo C; Sato T
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7173-6. PubMed ID: 26716305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctionality in coating films including Nb-doped TiO
    Asakura Y; Anada Y; Hamanaka R; Sato T; Katsumata KI; Wu X; Yin S
    Nanotechnology; 2018 Jun; 29(22):224001. PubMed ID: 29528844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple route to (NH4)(x)WO3 nanorods for near infrared absorption.
    Guo C; Yin S; Dong Q; Sato T
    Nanoscale; 2012 Jun; 4(11):3394-8. PubMed ID: 22543744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible core-shell Cs
    Wang Y; Yan Z; Zhang M; Zhang Z; Li T; Chen M; Dong W
    Nanoscale Adv; 2021 Jun; 3(11):3177-3183. PubMed ID: 36133663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvothermal fabrication of rubidium tungsten bronze for the absorption of near infrared light.
    Guo C; Yin S; Dong Q; Kimura T; Tanaka M; Hang le T; Wu X; Sato T
    J Nanosci Nanotechnol; 2013 May; 13(5):3236-9. PubMed ID: 23858836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Near-IR Cutting Performance in the Mixture of Cs(x)WO3 and Sb:SnO2 Nanoparticles.
    Park K; Lim S; Jeong Y; Kim J; Kim T; Lee S; Kim Y
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1693-5. PubMed ID: 27433649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency.
    Zhou Y; Huang A; Zhou H; Ji S; Jin P
    Nanotechnology; 2018 Mar; 29(9):095705. PubMed ID: 29219846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Monodispersed Cs
    Huang L; Tang H; Bai Y; Pu Y; Li L; Cheng J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33233571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Transparency and NIR-Shielding Properties of Nanocrystalline Sodium Tungsten Bronzes.
    Chao L; Sun C; Dou J; Li J; Liu J; Ma Y; Xiao L
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer.
    Lee SY; Kim JY; Lee JY; Song HJ; Lee S; Choi KH; Shin G
    Nanoscale Res Lett; 2014; 9(1):294. PubMed ID: 24982605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced near-infrared shielding ability of (Li,K)-codoped WO3 for smart windows: DFT prediction validated by experiment.
    Yang C; Chen JF; Zeng X; Cheng D; Huan H; Cao D
    Nanotechnology; 2016 Feb; 27(7):075203. PubMed ID: 26783034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible-Near-Infrared-Light-Driven Oxygen Evolution Reaction with Noble-Metal-Free WO
    Wang SL; Mak YL; Wang S; Chai J; Pan F; Foo ML; Chen W; Wu K; Xu GQ
    Langmuir; 2016 Dec; 32(49):13046-13053. PubMed ID: 27951691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid cross-linked polyaniline-WO3 nanocomposite thin film for NO(x) gas sensing.
    Kaushik A; Khan R; Gupta V; Malhotra BD; Ahmad S; Singh SP
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1792-6. PubMed ID: 19435041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties.
    Guo C; Yin S; Yan M; Kobayashi M; Kakihana M; Sato T
    Inorg Chem; 2012 Apr; 51(8):4763-71. PubMed ID: 22443484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrally Selective Smart Window with High Near-Infrared Light Shielding and Controllable Visible Light Transmittance.
    Wu M; Shi Y; Li R; Wang P
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39819-39827. PubMed ID: 30365301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Cationic Disorder in Hexagonal Cesium Tungsten Bronze Nanoparticles for Infrared Absorption Materials.
    Nakakura S; Machida K; Inose M; Wakabayashi M; Sato K; Tsunematsu H
    Inorg Chem; 2024 Feb; 63(5):2486-2494. PubMed ID: 38241711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WO
    Yan M; Li G; Guo C; Guo W; Ding D; Zhang S; Liu S
    Nanoscale; 2016 Oct; 8(41):17828-17835. PubMed ID: 27714210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Facile One-Step Solvothermal Synthesis and Electrical Properties of Reduced Graphene Oxide/Rod-Shaped Potassium Tungsten Bronze Nanocomposite.
    Liu B; Yin S; Wang Y; Guo C; Wu X; Dong Q; Kobayashi M; Kakihana M; Sato T
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7305-10. PubMed ID: 26716327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property.
    Guo C; Yin S; Huang L; Sato T
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2794-9. PubMed ID: 21675747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Bi
    Yan Y; Xu Y; Lei S; Ou X; Chen L; Xiong J; Xiao Y; Cheng B
    Dalton Trans; 2018 Mar; 47(10):3408-3416. PubMed ID: 29431784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.