These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26716305)

  • 21. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.
    Li B; Zhang Y; Zou R; Wang Q; Zhang B; An L; Yin F; Hua Y; Hu J
    Dalton Trans; 2014 Apr; 43(16):6244-50. PubMed ID: 24598863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic and optical properties of nanocrystalline WO₃ thin films studied by optical spectroscopy and density functional calculations.
    Johansson MB; Baldissera G; Valyukh I; Persson C; Arwin H; Niklasson GA; Osterlund L
    J Phys Condens Matter; 2013 May; 25(20):205502. PubMed ID: 23614973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvothermal Synthesis of Cs
    Zhang D; Ji T; Yu J; Jiang X; Jiao F
    Photochem Photobiol; 2018 Mar; 94(2):219-227. PubMed ID: 28881470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical-Electricity Gas-Sensing Property Detection of SDBS-WO
    Zhang Y; Wang J; Abudukeremu H; Nizamidin P; Abliz S; Yimit A
    Anal Sci; 2018 Dec; 34(12):1385-1391. PubMed ID: 30175726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Near infrared imaging with nanoparticles.
    Altinoğlu EI; Adair JH
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(5):461-77. PubMed ID: 20135691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology.
    Mohammadi S; Sohrabi M; Golikand AN; Fakhri A
    J Photochem Photobiol B; 2016 Aug; 161():217-21. PubMed ID: 27262854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Cs(x)WO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation.
    Wu X; Yin S; Xue D; Komarneni S; Sato T
    Nanoscale; 2015 Oct; 7(40):17048-54. PubMed ID: 26420057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uniform dispersion of lanthanum hexaboride nanoparticles in a silica thin film: synthesis and optical properties.
    Jiang F; Leong YK; Saunders M; Martyniuk M; Faraone L; Keating A; Dell JM
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5833-8. PubMed ID: 23057614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cationic Defect Engineering for Controlling the Infrared Absorption of Hexagonal Cesium Tungsten Bronze Nanoparticles.
    Nakakura S; Arif AF; Machida K; Adachi K; Ogi T
    Inorg Chem; 2019 Jul; 58(14):9101-9107. PubMed ID: 31244089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A visible-light active TiO
    Jia J; Taniyama K; Imura M; Kanai T; Shigesato Y
    Phys Chem Chem Phys; 2017 Jul; 19(26):17342-17348. PubMed ID: 28649686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-Dimensional/Two-Dimensional Core-Shell-Structured Bi
    Li J; Li Y; Zhang G; Huang H; Wu X
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7112-7122. PubMed ID: 30675792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance.
    Liu T; Liu B; Wang J; Yang L; Ma X; Li H; Zhang Y; Yin S; Sato T; Sekino T; Wang Y
    Sci Rep; 2016 Jun; 6():27373. PubMed ID: 27265778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-distance transmission of broadband near-infrared light guided by a semi-disordered 2D array of metal nanoparticles.
    Kim H; Jung K; Yeo SJ; Chang W; Kim JJ; Lee K; Kim YD; Han IK; Kwon SJ
    Nanoscale; 2018 Dec; 10(45):21275-21283. PubMed ID: 30421775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low Efficiency Upconversion Nanoparticles for High-Resolution Coalignment of Near-Infrared and Visible Light Paths on a Light Microscope.
    Sundaramoorthy S; Garcia Badaracco A; Hirsch SM; Park JH; Davies T; Dumont J; Shirasu-Hiza M; Kummel AC; Canman JC
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):7929-7940. PubMed ID: 28221018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle.
    Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z
    Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic rod-in-shell nanoparticles for photothermal therapy.
    Wang S; Xu H; Ye J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12275-81. PubMed ID: 24818860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical properties of Ce(3+)-Nd(3+) co-doped YAG nanoparticles for visual and near-infrared biological imaging.
    Wang Q; Qiu JB; Song ZG; Yang ZW; Yin ZY; Zhou DC
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():898-903. PubMed ID: 26004099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Harnessing and storing visible light using a heterojunction of WO3 and CdS for sunlight-free catalysis.
    Kim S; Park Y; Kim W; Park H
    Photochem Photobiol Sci; 2016 Aug; 15(8):1006-11. PubMed ID: 27411566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chitosan stabilized Prussian blue nanoparticles for photothermally enhanced gene delivery.
    Li XD; Liang XL; Ma F; Jing LJ; Lin L; Yang YB; Feng SS; Fu GL; Yue XL; Dai ZF
    Colloids Surf B Biointerfaces; 2014 Nov; 123():629-38. PubMed ID: 25456983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun CuS/PVP Nanowires and Superior Near-Infrared Filtration Efficiency for Thermal Shielding Applications.
    Kwon YT; Ryu SH; Shin JW; Yeo WH; Choa YH
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6575-6580. PubMed ID: 30663880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.