These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 26716305)
61. Band gap states in nanocrystalline WO3 thin films studied by soft x-ray spectroscopy and optical spectrophotometry. Johansson MB; Kristiansen PT; Duda L; Niklasson GA; Österlund L J Phys Condens Matter; 2016 Nov; 28(47):475802. PubMed ID: 27660919 [TBL] [Abstract][Full Text] [Related]
62. Near-infrared fluorescence imaging using organic dye nanoparticles. Yu J; Zhang X; Hao X; Zhang X; Zhou M; Lee CS; Chen X Biomaterials; 2014 Mar; 35(10):3356-64. PubMed ID: 24461324 [TBL] [Abstract][Full Text] [Related]
63. Synthesis and characterization of bioactive conjugated near-infrared fluorescent proteinoid-poly(L-lactic acid) hollow nanoparticles for optical detection of colon cancer. Kolitz-Domb M; Corem-Salkmon E; Grinberg I; Margel S Int J Nanomedicine; 2014; 9():5041-53. PubMed ID: 25382975 [TBL] [Abstract][Full Text] [Related]
64. Conjugated Polymer-Based Hybrid Nanoparticles with Two-Photon Excitation and Near-Infrared Emission Features for Fluorescence Bioimaging within the Biological Window. Lv Y; Liu P; Ding H; Wu Y; Yan Y; Liu H; Wang X; Huang F; Zhao Y; Tian Z ACS Appl Mater Interfaces; 2015 Sep; 7(37):20640-8. PubMed ID: 26340609 [TBL] [Abstract][Full Text] [Related]
65. Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods. Guo C; Yin S; Huang L; Yang L; Sato T Chem Commun (Camb); 2011 Aug; 47(31):8853-5. PubMed ID: 21748146 [TBL] [Abstract][Full Text] [Related]
66. Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities. ElKabbash M; Ilker E; Letsou T; Hoffman N; Yaney A; Hinczewski M; Strangi G Opt Lett; 2017 Sep; 42(18):3598-3601. PubMed ID: 28914911 [TBL] [Abstract][Full Text] [Related]
67. Cesium polytungstates with blue-tint-tunable near-infrared absorption. Yoshio S; Wakabayashi M; Adachi K RSC Adv; 2020 Mar; 10(18):10491-10501. PubMed ID: 35492950 [TBL] [Abstract][Full Text] [Related]
68. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide. Li G; Zhang S; Guo C; Liu S Nanoscale; 2016 May; 8(18):9861-8. PubMed ID: 27119556 [TBL] [Abstract][Full Text] [Related]
69. Robust infrared-shielding coating films prepared using perhydropolysilazane and hydrophobized indium tin oxide nanoparticles with tuned surface plasmon resonance. Katagiri K; Takabatake R; Inumaru K ACS Appl Mater Interfaces; 2013 Oct; 5(20):10240-5. PubMed ID: 24025399 [TBL] [Abstract][Full Text] [Related]
70. Optimization of Bi Lei P; Zhang P; Yao S; Song S; Dong L; Xu X; Liu X; Du K; Feng J; Zhang H ACS Appl Mater Interfaces; 2016 Oct; 8(41):27490-27497. PubMed ID: 27696854 [TBL] [Abstract][Full Text] [Related]
71. Bulk scale fabrication of sodium tungsten bronze nanoparticles for applications in plasmonics. Tegg L; Cuskelly D; Keast VJ Nanotechnology; 2018 Oct; 29(40):40LT02. PubMed ID: 30004026 [TBL] [Abstract][Full Text] [Related]
72. Amorphous tungstate precursor route to nanostructured tungsten oxide film with electrochromic property. Jeon IeR; Kang JH; Paek SM; Hwang SJ; Choy JH J Nanosci Nanotechnol; 2011 Jul; 11(7):6518-22. PubMed ID: 22121748 [TBL] [Abstract][Full Text] [Related]
73. Visible light-triggered nitric oxide release from near-infrared fluorescent nanospheric vehicles. Tan L; Wan A; Zhu X; Li H Analyst; 2014 Jul; 139(13):3398-406. PubMed ID: 24828458 [TBL] [Abstract][Full Text] [Related]
74. Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold-polyoxometalate particles. Solarska R; Bienkowski K; Zoladek S; Majcher A; Stefaniuk T; Kulesza PJ; Augustynski J Angew Chem Int Ed Engl; 2014 Dec; 53(51):14196-200. PubMed ID: 25332175 [TBL] [Abstract][Full Text] [Related]
75. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells. He M; Pang X; Liu X; Jiang B; He Y; Snaith H; Lin Z Angew Chem Int Ed Engl; 2016 Mar; 55(13):4280-4. PubMed ID: 26895302 [TBL] [Abstract][Full Text] [Related]
76. Preparation and characterization of uniform near IR polystyrene nanoparticles. Pellach M; Margel S Photochem Photobiol; 2014; 90(4):952-6. PubMed ID: 24460556 [TBL] [Abstract][Full Text] [Related]
77. Synthesis of Ag-Ho, Ag-Sm, Ag-Zn, Ag-Cu, Ag-Cs, Ag-Zr, Ag-Er, Ag-Y and Ag-Co metal organic nanoparticles for UV-Vis-NIR wide-range bio-tissue imaging. Wu Y; Lin Y; Xu J Photochem Photobiol Sci; 2019 May; 18(5):1081-1091. PubMed ID: 30702743 [TBL] [Abstract][Full Text] [Related]
78. Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: adsorption and photocatalytic studies. DePuccio DP; Botella P; O'Rourke B; Landry CC ACS Appl Mater Interfaces; 2015 Jan; 7(3):1987-96. PubMed ID: 25549007 [TBL] [Abstract][Full Text] [Related]
79. Safety assessment of near infrared light emitting diodes for diffuse optical measurements. Bozkurt A; Onaral B Biomed Eng Online; 2004 Mar; 3(1):9. PubMed ID: 15035670 [TBL] [Abstract][Full Text] [Related]
80. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. Sharker SM; Kim SM; Lee JE; Choi KH; Shin G; Lee S; Lee KD; Jeong JH; Lee H; Park SY J Control Release; 2015 Nov; 217():211-20. PubMed ID: 26381897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]