These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26716309)

  • 1. Magnetite Nanocrystals as Anode Electrode Materials for Rechargeable Li-Ion Batteries.
    Ma X; Zeng G; Chen G; Huang Y; Wu T
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7191-4. PubMed ID: 26716309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibria and Rate Phenomena from Atomistic to Mesoscale: Simulation Studies of Magnetite.
    Lininger CN; Brady NW; West AC
    Acc Chem Res; 2018 Mar; 51(3):583-590. PubMed ID: 29498267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Carbon Content on the Electrochemical Performances of MoS2-C Nanocomposites for Li-Ion Batteries.
    Sun W; Hu Z; Wang C; Tao Z; Chou SL; Kang YM; Liu HK
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22168-74. PubMed ID: 27502442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Pot Synthesis of Pomegranate-Structured Fe3 O4 /Carbon Nanospheres-Doped Graphene Aerogel for High-Rate Lithium Ion Batteries.
    He D; Li L; Bai F; Zha C; Shen L; Kung HH; Bao N
    Chemistry; 2016 Mar; 22(13):4454-9. PubMed ID: 26879124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk.
    He M; Kravchyk K; Walter M; Kovalenko MV
    Nano Lett; 2014 Mar; 14(3):1255-62. PubMed ID: 24484409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Preinsertion of Lithium: An Approach to Improve the Intrinsic Capacity Retention of Bulk Si Anodes for Li-ion Batteries.
    Ma R; Liu Y; He Y; Gao M; Pan H
    J Phys Chem Lett; 2012 Dec; 3(23):3555-8. PubMed ID: 26290987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.
    Yang Y; Jin S; Zhang Z; Du Z; Liu H; Yang J; Xu H; Ji H
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14180-14186. PubMed ID: 28387517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Metal Phosphide Nanocrystals as Anode Materials for Na-ion Batteries.
    Walter M; Bodnarchuk MI; Kravchyk KV; Kovalenko MV
    Chimia (Aarau); 2015; 69(12):724-728. PubMed ID: 26842319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZIF-67-Derived N-Doped Co/C Nanocubes as High-Performance Anode Materials for Lithium-Ion Batteries.
    Wang L; Wang Z; Xie L; Zhu L; Cao X
    ACS Appl Mater Interfaces; 2019 May; 11(18):16619-16628. PubMed ID: 30990305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.
    Wu M; Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21479-86. PubMed ID: 26349017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sea-Sponge-like Structure of Nano-Fe
    Chen S; Wu Q; Wen M; Wu Q; Li J; Cui Y; Pinna N; Fan Y; Wu T
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19656-19663. PubMed ID: 29851459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries.
    bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S
    Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxylated Poly(thiophene) Binders for High-Performance Magnetite Anodes: Impact of Cation Structure.
    Minnici K; Kwon YH; O'Neil J; Wang L; Dunkin MR; González MA; Huie MM; de Simon MV; Takeuchi KJ; Takeuchi ES; Marschilok AC; Reichmanis E
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44046-44057. PubMed ID: 31714051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.
    Zhu YG; Wang Y; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY
    Nanoscale; 2014 Dec; 6(24):15020-8. PubMed ID: 25367289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.