These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26716331)

  • 1. Effects of Sulfidation on ZnO Nanoparticle Dissolution and Aggregation in Sulfate-Containing Suspensions.
    Rasool K; Lee DS
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7334-40. PubMed ID: 26716331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility.
    Ma R; Levard C; Michel FM; Brown GE; Lowry GV
    Environ Sci Technol; 2013 Mar; 47(6):2527-34. PubMed ID: 23425191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfidation of sea urchin-like zinc oxide nanospheres: Kinetics, mechanisms, and impacts on growth of Escherichia coli.
    Qian X; Gu Z; Tang Q; Hong A; Filser J; Sharma VK; Li L
    Sci Total Environ; 2020 Nov; 741():140415. PubMed ID: 32599405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples.
    Peng YH; Tsai YC; Hsiung CE; Lin YH; Shih YH
    J Hazard Mater; 2017 Jan; 322(Pt B):348-356. PubMed ID: 27773444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters.
    Liu Z; Wang C; Hou J; Wang P; Miao L; Lv B; Yang Y; You G; Xu Y; Zhang M; Ci H
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31240-31249. PubMed ID: 30191530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative investigation of ZnO nanoparticle dissolution in the presence of δ-MnO
    Wan B; Hu Z; Yan Y; Liu F; Tan W; Feng X
    Environ Sci Pollut Res Int; 2020 May; 27(13):14751-14762. PubMed ID: 32052339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles.
    Wan B; Yan Y; Tang Y; Bai Y; Liu F; Tan W; Huang Q; Feng X
    Chemosphere; 2017 Jun; 176():255-265. PubMed ID: 28273533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water.
    Peng YH; Tso CP; Tsai YC; Zhuang CM; Shih YH
    Sci Total Environ; 2015 Oct; 530-531():183-190. PubMed ID: 26042532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pristine and sulfidized ZnO nanoparticles alter microbial community structure and nitrogen cycling in freshwater lakes.
    Bao S; Xiang D; Xue L; Xian B; Tang W; Fang T
    Environ Pollut; 2022 Feb; 294():118661. PubMed ID: 34896219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of silver nanoparticle sulfidation products.
    Fletcher ND; Lieb HC; Mullaugh KM
    Sci Total Environ; 2019 Jan; 648():854-860. PubMed ID: 30138885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate of CuO and ZnO nano- and microparticles in the plant environment.
    Dimkpa CO; Latta DE; McLean JE; Britt DW; Boyanov MI; Anderson AJ
    Environ Sci Technol; 2013 May; 47(9):4734-42. PubMed ID: 23540424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry.
    Jiang C; Hsu-Kim H
    Environ Sci Process Impacts; 2014 Nov; 16(11):2536-44. PubMed ID: 25220562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn.
    Li LZ; Zhou DM; Peijnenburg WJ; van Gestel CA; Jin SY; Wang YJ; Wang P
    Environ Int; 2011 Aug; 37(6):1098-104. PubMed ID: 21402408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles.
    Wang X; Sun T; Zhu H; Han T; Wang J; Dai H
    J Environ Manage; 2020 Aug; 267():110656. PubMed ID: 32349960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana.
    Yung MM; Wong SW; Kwok KW; Liu FZ; Leung YH; Chan WT; Li XY; Djurišić AB; Leung KM
    Aquat Toxicol; 2015 Aug; 165():31-40. PubMed ID: 26011135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell.
    Cao D; Shu X; Zhu D; Liang S; Hasan M; Gong S
    Nano Converg; 2020 Apr; 7(1):14. PubMed ID: 32328852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles.
    Mu Q; David CA; Galceran J; Rey-Castro C; Krzemiński L; Wallace R; Bamiduro F; Milne SJ; Hondow NS; Brydson R; Vizcay-Barrena G; Routledge MN; Jeuken LJ; Brown AP
    Chem Res Toxicol; 2014 Apr; 27(4):558-67. PubMed ID: 24575710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.
    Han Y; Hwang G; Kim D; Bradford SA; Lee B; Eom I; Kim PJ; Choi SQ; Kim H
    Water Res; 2016 Mar; 90():247-257. PubMed ID: 26741396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma.
    Cong Y; Jin F; Wang J; Mu J
    Aquat Toxicol; 2017 Apr; 185():11-18. PubMed ID: 28157544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.