BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26716730)

  • 21. Carbon and hydrogen isotope fractionation during anaerobic quinoline degradation.
    Fischer A; Weber S; Reineke AK; Hollender J; Richnow HH
    Chemosphere; 2010 Sep; 81(3):400-7. PubMed ID: 20673954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transformation and stable isotope fractionation of the urban biocide terbutryn during biodegradation, photodegradation and abiotic hydrolysis.
    Junginger T; Payraudeau S; Imfeld G
    Chemosphere; 2022 Oct; 305():135329. PubMed ID: 35709839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon isotopic fractionation during biodegradation of phthalate esters in anoxic condition.
    Liu H; Wu Z; Huang X; Yarnes C; Li M; Tong L
    Chemosphere; 2015 Nov; 138():1021-7. PubMed ID: 25585869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenol and cresol mixture degradation by the yeast Trichosporon cutaneum.
    Alexieva Z; Gerginova M; Manasiev J; Zlateva P; Shivarova N; Krastanov A
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1297-301. PubMed ID: 18712562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous biodegradation of p-cresol and phenol by the basidiomycete Phanerochaete chrysosporium.
    Kennes C; Lema JM
    J Ind Microbiol; 1994 Sep; 13(5):311-4. PubMed ID: 7765370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of carbon isotope fractionation during anaerobic reductive dehalogenation of chlorinated and brominated benzenes.
    Sohn SY; Kuntze K; Nijenhuis I; Häggblom MM
    Chemosphere; 2018 Feb; 193():785-792. PubMed ID: 29175406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origin of p-cresol in the anaerobic degradation of trinitrotoluene.
    Shen CF; Hawari JA; Ampleman G; Thiboutot S; Guiot SR
    Can J Microbiol; 2000 Feb; 46(2):119-24. PubMed ID: 10721479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil.
    Levén L; Nyberg K; Korkea-Aho L; Schnürer A
    Sci Total Environ; 2006 Jul; 364(1-3):229-38. PubMed ID: 16125214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compound-specific isotope analysis as a tool to characterize biodegradation of ethylbenzene.
    Dorer C; Vogt C; Kleinsteuber S; Stams AJ; Richnow HH
    Environ Sci Technol; 2014 Aug; 48(16):9122-32. PubMed ID: 24971724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cometabolic degradation of o-cresol and 2,6-dimethylphenol by Penicillium frequentans Bi 7/2.
    Hofrichter M; Bublitz F; Fritsche W
    J Basic Microbiol; 1995; 35(5):303-13. PubMed ID: 8568641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isotope fractionation associated with the simultaneous biodegradation of multiple nitrophenol isomers by Pseudomonas putida B2.
    Wijker RS; Zeyer J; Hofstetter TB
    Environ Sci Process Impacts; 2017 May; 19(5):775-784. PubMed ID: 28470308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C and Cl isotope fractionation of 1,2-dichloroethane displays unique δ¹³C/δ³⁷Cl patterns for pathway identification and reveals surprising C-Cl bond involvement in microbial oxidation.
    Palau J; Cretnik S; Shouakar-Stash O; Höche M; Elsner M; Hunkeler D
    Environ Sci Technol; 2014 Aug; 48(16):9430-7. PubMed ID: 25010210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enantioselective carbon stable isotope fractionation of hexachlorocyclohexane during aerobic biodegradation by Sphingobium spp.
    Bashir S; Fischer A; Nijenhuis I; Richnow HH
    Environ Sci Technol; 2013 Oct; 47(20):11432-9. PubMed ID: 24007541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon and hydrogen stable isotope analysis for characterizing the chemical degradation of tributyl phosphate.
    Liu J; Wu L; Kümmel S; Yao J; Schaefer T; Herrmann H; Richnow HH
    Chemosphere; 2018 Dec; 212():133-142. PubMed ID: 30144674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms.
    Bombach P; Nägele N; Rosell M; Richnow HH; Fischer A
    J Hazard Mater; 2015 Apr; 286():100-6. PubMed ID: 25559863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential for carboxylation-dehydroxylation of phenolic compounds by a methanogenic consortium.
    Bisaillon JG; Lépine F; Beaudet R; Sylvestre M
    Can J Microbiol; 1993 Jul; 39(7):642-8. PubMed ID: 8364800
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Marchesi M; Alberti L; Shouakar-Stash O; Pietrini I; de Ferra F; Carpani G; Aravena R; Franzetti A; Stella T
    Sci Total Environ; 2018 Apr; 619-620():784-793. PubMed ID: 29161603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic characterization of anaerobic microbial degradation of BTBPE in coastal wetland soils: Implication by compound-specific stable isotope analysis.
    Wang G; Guo P; Liu Y; Li C; Wang X; Wang H
    J Environ Manage; 2023 Jun; 335():117622. PubMed ID: 36867899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of biodegradability of phenolic compounds, characteristic to wastewater of the oil-shale chemical industry, on activated sludge by oxygen uptake measurement.
    Lepik R; Tenno T
    Environ Technol; 2012; 33(1-3):329-39. PubMed ID: 22519119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers.
    Braeckevelt M; Fischer A; Kästner M
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1401-21. PubMed ID: 22573267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.