BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26716738)

  • 1. [The history of renalase from amine oxidase to a a-NAD(P)H-oxidase/anomerase].
    Severina IS; Fedchenko VI; Veselovsky AV; Medvedev AE
    Biomed Khim; 2015; 61(6):667-79. PubMed ID: 26716738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human urinary renalase lacks the N-terminal signal peptide crucial for accommodation of its FAD cofactor.
    Fedchenko VI; Buneeva OA; Kopylov AT; Veselovsky AV; Zgoda VG; Medvedev AE
    Int J Biol Macromol; 2015; 78():347-53. PubMed ID: 25910647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation.
    Milani M; Ciriello F; Baroni S; Pandini V; Canevari G; Bolognesi M; Aliverti A
    J Mol Biol; 2011 Aug; 411(2):463-73. PubMed ID: 21699903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renalase is an α-NAD(P)H oxidase/anomerase.
    Beaupre BA; Carmichael BR; Hoag MR; Shah DD; Moran GR
    J Am Chem Soc; 2013 Sep; 135(37):13980-7. PubMed ID: 23964689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enzyme: Renalase.
    Moran GR; Hoag MR
    Arch Biochem Biophys; 2017 Oct; 632():66-76. PubMed ID: 28558965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial Renalase: Structure and Kinetics of an Enzyme with 2- and 6-Dihydro-β-NAD(P) Oxidase Activity from Pseudomonas phaseolicola.
    Hoag MR; Roman J; Beaupre BA; Silvaggi NR; Moran GR
    Biochemistry; 2015 Jun; 54(24):3791-802. PubMed ID: 26016690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renalase Secreted by Human Kidney HEK293T Cells Lacks its N-Terminal Peptide: Implications for Putative Mechanisms of Renalase Action.
    Fedchenko V; Kopylov A; Kozlova N; Buneeva O; Kaloshin A; Zgoda V; Medvedev A
    Kidney Blood Press Res; 2016; 41(5):593-603. PubMed ID: 27577995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and equilibria of the reductive and oxidative half-reactions of human renalase with α-NADPH.
    Beaupre BA; Hoag MR; Carmichael BR; Moran GR
    Biochemistry; 2013 Dec; 52(49):8929-37. PubMed ID: 24266457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems.
    Medvedev AE; Veselovsky AV; Fedchenko VI
    Biochemistry (Mosc); 2010 Aug; 75(8):951-8. PubMed ID: 21073414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyridoxamine-phosphate oxidases and pyridoxamine-phosphate oxidase-related proteins catalyze the oxidation of 6-NAD(P)H to NAD(P).
    Marbaix AY; Chehade G; Noël G; Morsomme P; Vertommen D; Bommer GT; Van Schaftingen E
    Biochem J; 2019 Oct; 476(20):3033-3052. PubMed ID: 31657440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalytic function of renalase: A decade of phantoms.
    Moran GR
    Biochim Biophys Acta; 2016 Jan; 1864(1):177-86. PubMed ID: 25900362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic function for human renalase: oxidation of isomeric forms of β-NAD(P)H that are inhibitory to primary metabolism.
    Beaupre BA; Hoag MR; Roman J; Försterling FH; Moran GR
    Biochemistry; 2015 Jan; 54(3):795-806. PubMed ID: 25531177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renalase does not catalyze the oxidation of catecholamines.
    Beaupre BA; Hoag MR; Moran GR
    Arch Biochem Biophys; 2015 Aug; 579():62-6. PubMed ID: 26049000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renalase, a catecholamine-metabolising enzyme?
    Boomsma F; Tipton KF
    J Neural Transm (Vienna); 2007; 114(6):775-6. PubMed ID: 17385068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renalase-A new understanding of its enzymatic and non-enzymatic activity and its implications for future research.
    Czerwińska K; Poręba R; Gać P
    Clin Exp Pharmacol Physiol; 2022 Jan; 49(1):3-9. PubMed ID: 34545616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypertension and kidney disease: is renalase a new player or an innocent bystander?
    Malyszko J; Malyszko JS; Mikhailidis DP; Rysz J; Zorawski M; Banach M
    J Hypertens; 2012 Mar; 30(3):457-62. PubMed ID: 22227817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma renalase in chronic kidney disease: differences and similarities between humans and rats.
    Quelhas-Santos J; Pestana M
    Curr Hypertens Rev; 2014; 10(3):166-70. PubMed ID: 25567503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand binding phenomena that pertain to the metabolic function of renalase.
    Beaupre BA; Roman JV; Hoag MR; Meneely KM; Silvaggi NR; Lamb AL; Moran GR
    Arch Biochem Biophys; 2016 Dec; 612():46-56. PubMed ID: 27769837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved soluble expression and use of recombinant human renalase.
    Morrison CS; Paskaleva EE; Rios MA; Beusse TR; Blair EM; Lin LQ; Hu JR; Gorby AH; Dodds DR; Armiger WB; Dordick JS; Koffas MAG
    PLoS One; 2020; 15(11):e0242109. PubMed ID: 33180865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renalase: a novel regulator of cardiometabolic and renal diseases.
    Vijayakumar A; Mahapatra NR
    Hypertens Res; 2022 Oct; 45(10):1582-1598. PubMed ID: 35941358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.