These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26717253)

  • 61. Excited state structural dynamics and Herzberg-Teller coupling of tetraphenylporphine explored via resonance Raman spectroscopy and density functional theory calculation.
    Xu J; Wan J; Zhao Y; Lv M; Zheng X; Wang G; Wang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1381-7. PubMed ID: 20172758
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Excitation of nucleobases from a computational perspective I: reaction paths.
    Giussani A; Segarra-Martí J; Roca-Sanjuán D; Merchán M
    Top Curr Chem; 2015; 355():57-97. PubMed ID: 24264958
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Vibrational spectroscopy of excited electronic states in carotenoids in vivo. Picosecond time-resolved resonance Raman scattering.
    Hayashi H; Noguchi T; Tasumi M; Atkinson GH
    Biophys J; 1991 Jul; 60(1):252-60. PubMed ID: 1883940
    [TBL] [Abstract][Full Text] [Related]  

  • 64. On the possibility of excimer state formation in homodimers of the pyrimidine bases.
    Shulga SM; Danilov VI
    Nucleic Acids Res; 1976 Apr; 3(4):1095-9. PubMed ID: 1272804
    [TBL] [Abstract][Full Text] [Related]  

  • 65. State preparation and excited electronic and vibrational behavior in hemes.
    Challa JR; Gunaratne TC; Simpson MC
    J Phys Chem B; 2006 Oct; 110(40):19956-65. PubMed ID: 17020382
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory.
    Neugebauer J; Hess BA
    J Chem Phys; 2004 Jun; 120(24):11564-77. PubMed ID: 15268191
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effect of C5 substitution on the photochemistry of uracil.
    Nachtigallová D; Lischka H; Szymczak JJ; Barbatti M; Hobza P; Gengeliczki Z; Pino G; Callahan MP; de Vries MS
    Phys Chem Chem Phys; 2010 May; 12(19):4924-33. PubMed ID: 20445900
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Photodissociation of uracil.
    Schneider M; Schon C; Fischer I; Rubio-Lago L; Kitsopoulos T
    Phys Chem Chem Phys; 2007 Dec; 9(45):6021-6. PubMed ID: 18004416
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Excited states in DNA strands investigated by ultrafast laser spectroscopy.
    Chen J; Zhang Y; Kohler B
    Top Curr Chem; 2015; 356():39-87. PubMed ID: 25326834
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Femtosecond time-resolved stimulated Raman reveals the birth of bacteriorhodopsin's J and K intermediates.
    Shim S; Dasgupta J; Mathies RA
    J Am Chem Soc; 2009 Jun; 131(22):7592-7. PubMed ID: 19441850
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of substituents on the acid-catalyzed photoreaction of pyrimidine derivatives in p-xylene.
    Seki K; Ohkura K
    Nucleic Acids Symp Ser; 1993; (29):43-4. PubMed ID: 8247786
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy.
    Nakamura R; Hamada N; Abe K; Yoshizawa M
    J Phys Chem B; 2012 Dec; 116(51):14768-75. PubMed ID: 23210980
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reactivity of substituted charged phenyl radicals toward components of nucleic acids.
    Ramírez-Arizmendi LE; Heidbrink JL; Guler LP; Kenttämaa HI
    J Am Chem Soc; 2003 Feb; 125(8):2272-81. PubMed ID: 12590557
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: resonance Raman and complete active space self-consistent field calculation study.
    Ouyang B; Xue JD; Zheng X; Fang WH
    J Chem Phys; 2014 May; 140(19):194305. PubMed ID: 24852536
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The excited-state relaxation mechanism of potential UVA-activated phototherapeutic molecules: trajectory surface hopping simulations of both 4-thiothymine and 2,4-dithiothymine.
    Cao J; Chen DC
    Phys Chem Chem Phys; 2020 May; 22(19):10924-10933. PubMed ID: 32373808
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Resonance Raman analysis of nonlinear solvent dynamics: betaine-30 in ethanol.
    Zhao X; Burt JA; McHale JL
    J Chem Phys; 2004 Dec; 121(22):11195-201. PubMed ID: 15634074
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Resonance Raman spectroscopy and density functional theory calculation study of photodecay dynamics of tetra(4-carboxyphenyl) porphyrin.
    Wan J; Wang H; Wu Z; Shun YC; Zheng X; Phillips DL
    Phys Chem Chem Phys; 2011 Jun; 13(21):10183-90. PubMed ID: 21503331
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine.
    Hudock HR; Levine BG; Thompson AL; Satzger H; Townsend D; Gador N; Ullrich S; Stolow A; Martínez TJ
    J Phys Chem A; 2007 Aug; 111(34):8500-8. PubMed ID: 17685594
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Resonance hyper-Raman excitation profiles and two-photon states of a donor-acceptor substituted polyene.
    Shoute LC; Blanchard-Desce M; Kelley AM
    J Phys Chem A; 2005 Nov; 109(46):10503-11. PubMed ID: 16834305
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Excited-state structure and dynamics of cis- and trans-Azobenzene from resonance Raman intensity analysis.
    Stuart CM; Frontiera RR; Mathies RA
    J Phys Chem A; 2007 Dec; 111(48):12072-80. PubMed ID: 17985852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.