These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1073 related articles for article (PubMed ID: 26717889)
1. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important? Foster JR; Finley AO; D'Amato AW; Bradford JB; Banerjee S Glob Chang Biol; 2016 Jun; 22(6):2138-51. PubMed ID: 26717889 [TBL] [Abstract][Full Text] [Related]
2. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change. Peltier DM; Ibáñez I Tree Physiol; 2015 Jan; 35(1):71-85. PubMed ID: 25576758 [TBL] [Abstract][Full Text] [Related]
4. Environmental drivers interactively affect individual tree growth across temperate European forests. Maes SL; Perring MP; Vanhellemont M; Depauw L; Van den Bulcke J; Brūmelis G; Brunet J; Decocq G; den Ouden J; Härdtle W; Hédl R; Heinken T; Heinrichs S; Jaroszewicz B; Kopecký M; Máliš F; Wulf M; Verheyen K Glob Chang Biol; 2019 Jan; 25(1):201-217. PubMed ID: 30346104 [TBL] [Abstract][Full Text] [Related]
5. Wood production response to climate change will depend critically on forest composition and structure. Coomes DA; Flores O; Holdaway R; Jucker T; Lines ER; Vanderwel MC Glob Chang Biol; 2014 Dec; 20(12):3632-45. PubMed ID: 24771558 [TBL] [Abstract][Full Text] [Related]
6. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests. Barbeta A; Peñuelas J Glob Chang Biol; 2017 Dec; 23(12):5054-5068. PubMed ID: 28544424 [TBL] [Abstract][Full Text] [Related]
7. Forest tree growth response to hydroclimate variability in the southern Appalachians. Elliott KJ; Miniat CF; Pederson N; Laseter SH Glob Chang Biol; 2015 Dec; 21(12):4627-41. PubMed ID: 26195014 [TBL] [Abstract][Full Text] [Related]
8. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality. Foster JR; D'Amato AW; Bradford JB Oecologia; 2014 May; 175(1):363-74. PubMed ID: 24442595 [TBL] [Abstract][Full Text] [Related]
9. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests. Chen HY; Luo Y Glob Chang Biol; 2015 Oct; 21(10):3675-84. PubMed ID: 26136379 [TBL] [Abstract][Full Text] [Related]
10. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Schurman JS; Babst F; Björklund J; Rydval M; Bače R; Čada V; Janda P; Mikolas M; Saulnier M; Trotsiuk V; Svoboda M Glob Chang Biol; 2019 Sep; 25(9):3136-3150. PubMed ID: 31166643 [TBL] [Abstract][Full Text] [Related]
11. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest. Bond-Lamberty B; Rocha AV; Calvin K; Holmes B; Wang C; Goulden ML Glob Chang Biol; 2014 Jan; 20(1):216-27. PubMed ID: 24115380 [TBL] [Abstract][Full Text] [Related]
12. Interspecific variation in growth responses to climate and competition of five eastern tree species. Rollinson CR; Kaye MW; Canham CD Ecology; 2016 Apr; 97(4):1003-11. PubMed ID: 27220216 [TBL] [Abstract][Full Text] [Related]
13. Linkage between growth phenology and climate-growth responses along landscape gradients in boreal forests. Tumajer J; Altman J; Lehejček J Sci Total Environ; 2023 Dec; 905():167153. PubMed ID: 37730045 [TBL] [Abstract][Full Text] [Related]
14. Quantifying climate-growth relationships at the stand level in a mature mixed-species conifer forest. Teets A; Fraver S; Weiskittel AR; Hollinger DY Glob Chang Biol; 2018 Aug; 24(8):3587-3602. PubMed ID: 29520931 [TBL] [Abstract][Full Text] [Related]
15. Tree growth-climate relationships in a forest-plot network on Mediterranean mountains. Fyllas NM; Christopoulou A; Galanidis A; Michelaki CZ; Dimitrakopoulos PG; Fulé PZ; Arianoutsou M Sci Total Environ; 2017 Nov; 598():393-403. PubMed ID: 28448931 [TBL] [Abstract][Full Text] [Related]
16. Shifts in tree functional composition amplify the response of forest biomass to climate. Zhang T; Niinemets Ü; Sheffield J; Lichstein JW Nature; 2018 Apr; 556(7699):99-102. PubMed ID: 29562235 [TBL] [Abstract][Full Text] [Related]
17. Urbanization exacerbates climate sensitivity of eastern United States broadleaf trees. Warner K; Sonti NF; Cook EM; Hallett RA; Hutyra LR; Reinmann AB Ecol Appl; 2024 Jun; 34(4):e2970. PubMed ID: 38602711 [TBL] [Abstract][Full Text] [Related]
18. Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada. Hogg EH; Michaelian M; Hook TI; Undershultz ME Glob Chang Biol; 2017 Dec; 23(12):5297-5308. PubMed ID: 28636146 [TBL] [Abstract][Full Text] [Related]
19. Sap-feeding insects on forest trees along latitudinal gradients in northern Europe: a climate-driven patterns. Kozlov MV; Stekolshchikov AV; Söderman G; Labina ES; Zverev V; Zvereva EL Glob Chang Biol; 2015 Jan; 21(1):106-16. PubMed ID: 25044643 [TBL] [Abstract][Full Text] [Related]
20. Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites. Camarero JJ; Gazol A; Galván JD; Sangüesa-Barreda G; Gutiérrez E Glob Chang Biol; 2015 Feb; 21(2):738-49. PubMed ID: 25362899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]