BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1370 related articles for article (PubMed ID: 26717889)

  • 1. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?
    Foster JR; Finley AO; D'Amato AW; Bradford JB; Banerjee S
    Glob Chang Biol; 2016 Jun; 22(6):2138-51. PubMed ID: 26717889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change.
    Peltier DM; Ibáñez I
    Tree Physiol; 2015 Jan; 35(1):71-85. PubMed ID: 25576758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.
    Walker XJ; Mack MC; Johnstone JF
    Glob Chang Biol; 2015 Aug; 21(8):3102-13. PubMed ID: 25683740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental drivers interactively affect individual tree growth across temperate European forests.
    Maes SL; Perring MP; Vanhellemont M; Depauw L; Van den Bulcke J; Brūmelis G; Brunet J; Decocq G; den Ouden J; Härdtle W; Hédl R; Heinken T; Heinrichs S; Jaroszewicz B; Kopecký M; Máliš F; Wulf M; Verheyen K
    Glob Chang Biol; 2019 Jan; 25(1):201-217. PubMed ID: 30346104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wood production response to climate change will depend critically on forest composition and structure.
    Coomes DA; Flores O; Holdaway R; Jucker T; Lines ER; Vanderwel MC
    Glob Chang Biol; 2014 Dec; 20(12):3632-45. PubMed ID: 24771558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests.
    Barbeta A; Peñuelas J
    Glob Chang Biol; 2017 Dec; 23(12):5054-5068. PubMed ID: 28544424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forest tree growth response to hydroclimate variability in the southern Appalachians.
    Elliott KJ; Miniat CF; Pederson N; Laseter SH
    Glob Chang Biol; 2015 Dec; 21(12):4627-41. PubMed ID: 26195014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality.
    Foster JR; D'Amato AW; Bradford JB
    Oecologia; 2014 May; 175(1):363-74. PubMed ID: 24442595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.
    Chen HY; Luo Y
    Glob Chang Biol; 2015 Oct; 21(10):3675-84. PubMed ID: 26136379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures.
    Schurman JS; Babst F; Björklund J; Rydval M; Bače R; Čada V; Janda P; Mikolas M; Saulnier M; Trotsiuk V; Svoboda M
    Glob Chang Biol; 2019 Sep; 25(9):3136-3150. PubMed ID: 31166643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest.
    Bond-Lamberty B; Rocha AV; Calvin K; Holmes B; Wang C; Goulden ML
    Glob Chang Biol; 2014 Jan; 20(1):216-27. PubMed ID: 24115380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecific variation in growth responses to climate and competition of five eastern tree species.
    Rollinson CR; Kaye MW; Canham CD
    Ecology; 2016 Apr; 97(4):1003-11. PubMed ID: 27220216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linkage between growth phenology and climate-growth responses along landscape gradients in boreal forests.
    Tumajer J; Altman J; Lehejček J
    Sci Total Environ; 2023 Dec; 905():167153. PubMed ID: 37730045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying climate-growth relationships at the stand level in a mature mixed-species conifer forest.
    Teets A; Fraver S; Weiskittel AR; Hollinger DY
    Glob Chang Biol; 2018 Aug; 24(8):3587-3602. PubMed ID: 29520931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tree growth-climate relationships in a forest-plot network on Mediterranean mountains.
    Fyllas NM; Christopoulou A; Galanidis A; Michelaki CZ; Dimitrakopoulos PG; Fulé PZ; Arianoutsou M
    Sci Total Environ; 2017 Nov; 598():393-403. PubMed ID: 28448931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifts in tree functional composition amplify the response of forest biomass to climate.
    Zhang T; Niinemets Ü; Sheffield J; Lichstein JW
    Nature; 2018 Apr; 556(7699):99-102. PubMed ID: 29562235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urbanization exacerbates climate sensitivity of eastern United States broadleaf trees.
    Warner K; Sonti NF; Cook EM; Hallett RA; Hutyra LR; Reinmann AB
    Ecol Appl; 2024 Jun; 34(4):e2970. PubMed ID: 38602711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada.
    Hogg EH; Michaelian M; Hook TI; Undershultz ME
    Glob Chang Biol; 2017 Dec; 23(12):5297-5308. PubMed ID: 28636146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sap-feeding insects on forest trees along latitudinal gradients in northern Europe: a climate-driven patterns.
    Kozlov MV; Stekolshchikov AV; Söderman G; Labina ES; Zverev V; Zvereva EL
    Glob Chang Biol; 2015 Jan; 21(1):106-16. PubMed ID: 25044643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites.
    Camarero JJ; Gazol A; Galván JD; Sangüesa-Barreda G; Gutiérrez E
    Glob Chang Biol; 2015 Feb; 21(2):738-49. PubMed ID: 25362899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.