BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26717981)

  • 1. Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis.
    Terenin IM; Akulich KA; Andreev DE; Polyanskaya SA; Shatsky IN; Dmitriev SE
    Nucleic Acids Res; 2016 Feb; 44(4):1882-93. PubMed ID: 26717981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP.
    Unbehaun A; Borukhov SI; Hellen CU; Pestova TV
    Genes Dev; 2004 Dec; 18(24):3078-93. PubMed ID: 15601822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. eIF5 and eIF5B together stimulate 48S initiation complex formation during ribosomal scanning.
    Pisareva VP; Pisarev AV
    Nucleic Acids Res; 2014 Oct; 42(19):12052-69. PubMed ID: 25260592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation.
    Algire MA; Maag D; Lorsch JR
    Mol Cell; 2005 Oct; 20(2):251-62. PubMed ID: 16246727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae.
    Huang HK; Yoon H; Hannig EM; Donahue TF
    Genes Dev; 1997 Sep; 11(18):2396-413. PubMed ID: 9308967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The joining of ribosomal subunits in eukaryotes requires eIF5B.
    Pestova TV; Lomakin IB; Lee JH; Choi SK; Dever TE; Hellen CU
    Nature; 2000 Jan; 403(6767):332-5. PubMed ID: 10659855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation.
    Asano K; Shalev A; Phan L; Nielsen K; Clayton J; Valásek L; Donahue TF; Hinnebusch AG
    EMBO J; 2001 May; 20(9):2326-37. PubMed ID: 11331597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation.
    Majumdar R; Maitra U
    EMBO J; 2005 Nov; 24(21):3737-46. PubMed ID: 16222335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection.
    Pestova TV; Kolupaeva VG
    Genes Dev; 2002 Nov; 16(22):2906-22. PubMed ID: 12435632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon.
    Maag D; Fekete CA; Gryczynski Z; Lorsch JR
    Mol Cell; 2005 Jan; 17(2):265-75. PubMed ID: 15664195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control.
    Nielsen KH; Szamecz B; Valásek L; Jivotovskaya A; Shin BS; Hinnebusch AG
    EMBO J; 2004 Mar; 23(5):1166-77. PubMed ID: 14976554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition.
    Llácer JL; Hussain T; Saini AK; Nanda JS; Kaur S; Gordiyenko Y; Kumar R; Hinnebusch AG; Lorsch JR; Ramakrishnan V
    Elife; 2018 Nov; 7():. PubMed ID: 30475211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of translation initiation in eukaryotes.
    Pestova TV; Kolupaeva VG; Lomakin IB; Pilipenko EV; Shatsky IN; Agol VI; Hellen CU
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7029-36. PubMed ID: 11416183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The scanning mechanism of eukaryotic translation initiation.
    Hinnebusch AG
    Annu Rev Biochem; 2014; 83():779-812. PubMed ID: 24499181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation.
    Das S; Maitra U
    Prog Nucleic Acid Res Mol Biol; 2001; 70():207-31. PubMed ID: 11642363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex.
    Nanda JS; Saini AK; Muñoz AM; Hinnebusch AG; Lorsch JR
    J Biol Chem; 2013 Feb; 288(8):5316-29. PubMed ID: 23293029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the beta subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo.
    Das S; Maitra U
    Mol Cell Biol; 2000 Jun; 20(11):3942-50. PubMed ID: 10805737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and thermodynamic analysis of the role of start codon/anticodon base pairing during eukaryotic translation initiation.
    Kolitz SE; Takacs JE; Lorsch JR
    RNA; 2009 Jan; 15(1):138-52. PubMed ID: 19029312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of mammalian 48S ribosomal translation initiation complex.
    Majumdar R; Chaudhuri J; Maitra U
    Methods Enzymol; 2007; 430():179-208. PubMed ID: 17913639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and functional characterization of a temperature-sensitive mutant of the yeast Saccharomyces cerevisiae in translation initiation factor eIF5: an eIF5-dependent cell-free translation system.
    Maiti T; Das S; Maitra U
    Gene; 2000 Feb; 244(1-2):109-18. PubMed ID: 10689193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.