BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26718135)

  • 1. Characterization of tissue scaffolds for time-dependent biotransport criteria - a novel computational procedure.
    Li E; Chang CC; Zhang Z; Li Q
    Comput Methods Biomech Biomed Engin; 2016; 19(11):1210-24. PubMed ID: 26718135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation.
    Woo Jung J; Yi HG; Kang TY; Yong WJ; Jin S; Yun WS; Cho DW
    J Biomech Eng; 2013 Aug; 135(8):84501. PubMed ID: 23719774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering.
    Ahn G; Park JH; Kang T; Lee JW; Kang HW; Cho DW
    J Biomech Eng; 2010 Oct; 132(10):104506. PubMed ID: 20887024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The realistic prediction of oxygen transport in a tissue-engineered scaffold by introducing time-varying effective diffusion coefficients.
    Kang TY; Kang HW; Hwang CM; Lee SJ; Park J; Yoo JJ; Cho DW
    Acta Biomater; 2011 Sep; 7(9):3345-53. PubMed ID: 21642022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-responsive scaffolds generate a pro-healing response.
    You JO; Rafat M; Almeda D; Maldonado N; Guo P; Nabzdyk CS; Chun M; LoGerfo FW; Hutchinson JW; Pradhan-Nabzdyk LK; Auguste DT
    Biomaterials; 2015 Jul; 57():22-32. PubMed ID: 25956194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico prediction of the cell proliferation in porous scaffold using model of effective pore.
    Makhaniok A; Haranava Y; Goranov V; Panseri S; Semerikhina S; Russo A; Marcacci M; Dediu V
    Biosystems; 2013 Dec; 114(3):227-37. PubMed ID: 24141144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue.
    Kang TY; Hong JM; Jung JW; Yoo JJ; Cho DW
    Langmuir; 2013 Jan; 29(2):701-9. PubMed ID: 23234496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Numerical simulation of chondrocyte growth in 3-D scaffolds].
    Jiang H; Zhou Y; Tan WS
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan; 23(1):171-5. PubMed ID: 17366909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations.
    Buckley CT; O'Kelly KU
    J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):459-67. PubMed ID: 20166121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.
    Melchels FP; Barradas AM; van Blitterswijk CA; de Boer J; Feijen J; Grijpma DW
    Acta Biomater; 2010 Nov; 6(11):4208-17. PubMed ID: 20561602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure design of biodegradable scaffold and its effect on tissue regeneration.
    Chen Y; Zhou S; Li Q
    Biomaterials; 2011 Aug; 32(22):5003-14. PubMed ID: 21529933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell proliferation and oxygen diffusion in a vascularising scaffold.
    Landman KA; Cai AQ
    Bull Math Biol; 2007 Oct; 69(7):2405-28. PubMed ID: 17554583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering.
    Valentin JE; Freytes DO; Grasman JM; Pesyna C; Freund J; Gilbert TW; Badylak SF
    J Biomed Mater Res A; 2009 Dec; 91(4):1010-7. PubMed ID: 19097154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor.
    Shakeel M; Matthews PC; Graham RS; Waters SL
    Math Med Biol; 2013 Mar; 30(1):21-44. PubMed ID: 21994793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection.
    Wang L; Korossis S; Fisher J; Ingham E; Jin Z
    J Heart Valve Dis; 2011 Jul; 20(4):442-8. PubMed ID: 21863659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in silico bioreactor for simulating laboratory experiments in tissue engineering.
    Galbusera F; Cioffi M; Raimondi MT
    Biomed Microdevices; 2008 Aug; 10(4):547-54. PubMed ID: 18236161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen generating scaffolds for enhancing engineered tissue survival.
    Oh SH; Ward CL; Atala A; Yoo JJ; Harrison BS
    Biomaterials; 2009 Feb; 30(5):757-62. PubMed ID: 19019425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability analysis of scaffolds for bone tissue engineering.
    Dias MR; Fernandes PR; Guedes JM; Hollister SJ
    J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.