BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26718287)

  • 1. Dermal uptake directly from air under transient conditions: advances in modeling and comparisons with experimental results for human subjects.
    Morrison GC; Weschler CJ; Bekö G
    Indoor Air; 2016 Dec; 26(6):913-924. PubMed ID: 26718287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of clothing in both accelerating and impeding dermal absorption of airborne SVOCs.
    Morrison GC; Weschler CJ; Bekö G; Koch HM; Salthammer T; Schripp T; Toftum J; Clausen G
    J Expo Sci Environ Epidemiol; 2016; 26(1):113-8. PubMed ID: 26058800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification.
    Weschler CJ; Bekö G; Koch HM; Salthammer T; Schripp T; Toftum J; Clausen G
    Environ Health Perspect; 2015 Oct; 123(10):928-34. PubMed ID: 25850107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling clothing as a secondary source of exposure to SVOCs across indoor microenvironments.
    Kvasnicka J; Cohen Hubal EA; Diamond ML
    J Expo Sci Environ Epidemiol; 2024 Mar; 34(2):376-385. PubMed ID: 38129669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dermal uptake of phthalates from clothing: Comparison of model to human participant results.
    Morrison GC; Weschler CJ; Bekö G
    Indoor Air; 2017 May; 27(3):642-649. PubMed ID: 27859617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Dermal Exposure to Gas-Phase Semivolatile Organic Compounds (SVOCs): A Further Study of SVOC Mass Transfer between Clothing and Skin Surface Lipids.
    Cao J; Zhang X; Zhang Y
    Environ Sci Technol; 2018 Apr; 52(8):4676-4683. PubMed ID: 29543445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phthalate metabolites in urine samples from Beijing children and correlations with phthalate levels in their handwipes.
    Gong M; Weschler CJ; Liu L; Shen H; Huang L; Sundell J; Zhang Y
    Indoor Air; 2015 Dec; 25(6):572-81. PubMed ID: 25557639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From air to clothing: characterizing the accumulation of semi-volatile organic compounds to fabrics in indoor environments.
    Saini A; Okeme JO; Mark Parnis J; McQueen RH; Diamond ML
    Indoor Air; 2017 May; 27(3):631-641. PubMed ID: 27555567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of dermal uptake of nicotine directly from air and clothing.
    Bekö G; Morrison G; Weschler CJ; Koch HM; Pälmke C; Salthammer T; Schripp T; Toftum J; Clausen G
    Indoor Air; 2017 Mar; 27(2):427-433. PubMed ID: 27555532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dermal uptake of nicotine from air and clothing: Experimental verification.
    Bekö G; Morrison G; Weschler CJ; Koch HM; Pälmke C; Salthammer T; Schripp T; Eftekhari A; Toftum J; Clausen G
    Indoor Air; 2018 Mar; 28(2):247-257. PubMed ID: 29095533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SVOC exposure indoors: fresh look at dermal pathways.
    Weschler CJ; Nazaroff WW
    Indoor Air; 2012 Oct; 22(5):356-77. PubMed ID: 22313149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhalation and Dermal Uptake of Particle and Gas-Phase Phthalates-A Human Exposure Study.
    Andersen C; Krais AM; Eriksson AC; Jakobsson J; Löndahl J; Nielsen J; Lindh CH; Pagels J; Gudmundsson A; Wierzbicka A
    Environ Sci Technol; 2018 Nov; 52(21):12792-12800. PubMed ID: 30264993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure.
    Koniecki D; Wang R; Moody RP; Zhu J
    Environ Res; 2011 Apr; 111(3):329-36. PubMed ID: 21315328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate.
    Lorber M; Weschler CJ; Morrison G; Bekö G; Gong M; Koch HM; Salthammer T; Schripp T; Toftum J; Clausen G
    J Expo Sci Environ Epidemiol; 2017 Nov; 27(6):601-609. PubMed ID: 27531370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeled exposure assessment via inhalation and dermal pathways to airborne semivolatile organic compounds (SVOCs) in residences.
    Shi S; Zhao B
    Environ Sci Technol; 2014 May; 48(10):5691-9. PubMed ID: 24730560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application.
    Gong M; Zhang Y; Weschler CJ
    Indoor Air; 2014 Jun; 24(3):292-306. PubMed ID: 24245588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars.
    Geiss O; Tirendi S; Barrero-Moreno J; Kotzias D
    Environ Int; 2009 Nov; 35(8):1188-95. PubMed ID: 19729200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Clothing on Dermal Exposure to Phthalates: Observations and Insights from Sampling Both Skin and Clothing.
    Gong M; Weschler CJ; Zhang Y
    Environ Sci Technol; 2016 Apr; 50(8):4350-7. PubMed ID: 27007912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high throughput method for measuring cloth-air equilibrium distribution ratios for SVOCs present in indoor environments.
    Eftekhari A; Morrison GC
    Talanta; 2018 Jun; 183():250-257. PubMed ID: 29567173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-volatile organic compounds in the air and dust of 30 French schools: a pilot study.
    Raffy G; Mercier F; Blanchard O; Derbez M; Dassonville C; Bonvallot N; Glorennec P; Le Bot B
    Indoor Air; 2017 Jan; 27(1):114-127. PubMed ID: 26880519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.