These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 26718425)
1. Critical role of miRNAs in mediating skeletal muscle atrophy (Review). Yu Y; Chu W; Chai J; Li X; Liu L; Ma L Mol Med Rep; 2016 Feb; 13(2):1470-4. PubMed ID: 26718425 [TBL] [Abstract][Full Text] [Related]
2. Myogenic microRNAs as Therapeutic Targets for Skeletal Muscle Mass Wasting in Breast Cancer Models. Artigas-Arias M; Curi R; Marzuca-Nassr GN Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928418 [TBL] [Abstract][Full Text] [Related]
3. miR-628 Promotes Burn-Induced Skeletal Muscle Atrophy via Targeting IRS1. Yu Y; Li X; Liu L; Chai J; Haijun Z; Chu W; Yin H; Ma L; Duan H; Xiao M Int J Biol Sci; 2016; 12(10):1213-1224. PubMed ID: 27766036 [TBL] [Abstract][Full Text] [Related]
4. Regulation of muscle atrophy by microRNAs: 'AtromiRs' as potential target in cachexia. van de Worp WRPH; Theys J; van Helvoort A; Langen RCJ Curr Opin Clin Nutr Metab Care; 2018 Nov; 21(6):423-429. PubMed ID: 30198917 [TBL] [Abstract][Full Text] [Related]
5. From Nutrient to MicroRNA: a Novel Insight into Cell Signaling Involved in Skeletal Muscle Development and Disease. Zhang Y; Yu B; He J; Chen D Int J Biol Sci; 2016; 12(10):1247-1261. PubMed ID: 27766039 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of NF90-NF45 Represses Myogenic MicroRNA Biogenesis, Resulting in Development of Skeletal Muscle Atrophy and Centronuclear Muscle Fibers. Todaka H; Higuchi T; Yagyu K; Sugiyama Y; Yamaguchi F; Morisawa K; Ono M; Fukushima A; Tsuda M; Taniguchi T; Sakamoto S Mol Cell Biol; 2015 Jul; 35(13):2295-308. PubMed ID: 25918244 [TBL] [Abstract][Full Text] [Related]
7. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size. Lee DE; Brown JL; Rosa-Caldwell ME; Blackwell TA; Perry RA; Brown LA; Khatri B; Seo D; Bottje WG; Washington TA; Wiggs MP; Kong BW; Greene NP Physiol Genomics; 2017 May; 49(5):253-260. PubMed ID: 28341621 [TBL] [Abstract][Full Text] [Related]
8. Emerging role of MyomiRs as biomarkers and therapeutic targets in skeletal muscle diseases. Srivastava S; Rathor R; Singh SN; Suryakumar G Am J Physiol Cell Physiol; 2021 Nov; 321(5):C859-C875. PubMed ID: 34586896 [TBL] [Abstract][Full Text] [Related]
9. Regulation of skeletal muscle development and disease by microRNAs. Liu N; Bassel-Duby R Results Probl Cell Differ; 2015; 56():165-90. PubMed ID: 25344671 [TBL] [Abstract][Full Text] [Related]
10. Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction. Schulze PC; Fang J; Kassik KA; Gannon J; Cupesi M; MacGillivray C; Lee RT; Rosenthal N Circ Res; 2005 Sep; 97(5):418-26. PubMed ID: 16051886 [TBL] [Abstract][Full Text] [Related]
11. MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review). Jung W; Juang U; Gwon S; Nguyen H; Huang Q; Lee S; Lee B; Kwon SH; Kim SH; Park J Mol Med Rep; 2024 Jun; 29(6):. PubMed ID: 38606516 [TBL] [Abstract][Full Text] [Related]
12. [A Cellular Pharmacological Approach to the Development of Drugs to Treat Muscle Wasting]. Sakamoto K Yakugaku Zasshi; 2018; 138(10):1271-1275. PubMed ID: 30270271 [TBL] [Abstract][Full Text] [Related]
13. Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. Soares RJ; Cagnin S; Chemello F; Silvestrin M; Musaro A; De Pitta C; Lanfranchi G; Sandri M J Biol Chem; 2014 Aug; 289(32):21909-25. PubMed ID: 24891504 [TBL] [Abstract][Full Text] [Related]
14. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Glass DJ Curr Top Microbiol Immunol; 2010; 346():267-78. PubMed ID: 20593312 [TBL] [Abstract][Full Text] [Related]
15. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy. Simion V; Sobilo J; Clemoncon R; Natkunarajah S; Ezzine S; Abdallah F; Lerondel S; Pichon C; Baril P PLoS One; 2017; 12(5):e0177492. PubMed ID: 28493972 [TBL] [Abstract][Full Text] [Related]
16. MicroRNAs in skeletal and cardiac muscle development. Callis TE; Chen JF; Wang DZ DNA Cell Biol; 2007 Apr; 26(4):219-25. PubMed ID: 17465888 [TBL] [Abstract][Full Text] [Related]
17. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Langen RC; Gosker HR; Remels AH; Schols AM Int J Biochem Cell Biol; 2013 Oct; 45(10):2245-56. PubMed ID: 23827718 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanisms of skeletal muscle atrophy in a mouse model of cerebral ischemia. Desgeorges MM; Devillard X; Toutain J; Divoux D; Castells J; Bernaudin M; Touzani O; Freyssenet DG Stroke; 2015 Jun; 46(6):1673-80. PubMed ID: 25953371 [TBL] [Abstract][Full Text] [Related]
19. MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle. McCormick R; Goljanek-Whysall K Int Rev Cell Mol Biol; 2017; 334():265-308. PubMed ID: 28838540 [TBL] [Abstract][Full Text] [Related]