These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26718425)

  • 21. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass.
    Jones SW; Hill RJ; Krasney PA; O'Conner B; Peirce N; Greenhaff PL
    FASEB J; 2004 Jun; 18(9):1025-7. PubMed ID: 15084522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypoxia treatment and resistance training alters microRNA profiling in rats skeletal muscle.
    Mei T; Hu Y; Zhang Y; Li Y
    Sci Rep; 2024 Apr; 14(1):8388. PubMed ID: 38600177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice.
    Hamrick MW; Herberg S; Arounleut P; He HZ; Shiver A; Qi RQ; Zhou L; Isales CM; Mi QS
    Biochem Biophys Res Commun; 2010 Sep; 400(3):379-83. PubMed ID: 20800581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans.
    McGregor RA; Poppitt SD; Cameron-Smith D
    Ageing Res Rev; 2014 Sep; 17():25-33. PubMed ID: 24833328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Signaling pathways controlling skeletal muscle mass].
    Zheng LF; Chen PJ; Xiao WH
    Sheng Li Xue Bao; 2019 Aug; 71(4):671-679. PubMed ID: 31440764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway.
    Ikeda Y; Imao M; Satoh A; Watanabe H; Hamano H; Horinouchi Y; Izawa-Ishizawa Y; Kihira Y; Miyamoto L; Ishizawa K; Tsuchiya K; Tamaki T
    J Trace Elem Med Biol; 2016 May; 35():66-76. PubMed ID: 27049128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MicroRNAs involved in skeletal muscle differentiation.
    Luo W; Nie Q; Zhang X
    J Genet Genomics; 2013 Mar; 40(3):107-16. PubMed ID: 23522383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular regulation of skeletal muscle mass.
    Russell AP
    Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):378-84. PubMed ID: 19650790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supplementation of ketoacids contributes to the up-regulation of the Wnt7a/Akt/p70S6K pathway and the down-regulation of apoptotic and ubiquitin-proteasome systems in the muscle of 5/6 nephrectomised rats.
    Wang DT; Lu L; Shi Y; Geng ZB; Yin Y; Wang M; Wei LB
    Br J Nutr; 2014 May; 111(9):1536-48. PubMed ID: 24502851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy.
    Glass DJ
    Nat Cell Biol; 2003 Feb; 5(2):87-90. PubMed ID: 12563267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression patterns of regulatory lncRNAs and miRNAs in muscular atrophy models induced by starvation in vitro and in vivo.
    Lei S; She Y; Zeng J; Chen R; Zhou S; Shi H
    Mol Med Rep; 2019 Nov; 20(5):4175-4185. PubMed ID: 31545487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combination of small RNAs for skeletal muscle regeneration.
    Kim N; Yoo JJ; Atala A; Lee SJ
    FASEB J; 2016 Mar; 30(3):1198-206. PubMed ID: 26625904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Research advance on signaling pathways and protein metabolism for skeletal muscle disuse atrophy].
    Li GQ; Liu XY; Xu SY
    Zhongguo Gu Shang; 2013 Nov; 26(11):969-72. PubMed ID: 24605756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Skeletal muscle wasting in chronic kidney disease: the emerging role of microRNAs.
    Robinson KA; Baker LA; Graham-Brown MPM; Watson EL
    Nephrol Dial Transplant; 2020 Sep; 35(9):1469-1478. PubMed ID: 31603229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease.
    Doucet M; Russell AP; Léger B; Debigaré R; Joanisse DR; Caron MA; LeBlanc P; Maltais F
    Am J Respir Crit Care Med; 2007 Aug; 176(3):261-9. PubMed ID: 17478621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skeletal muscle hypertrophy and atrophy signaling pathways.
    Glass DJ
    Int J Biochem Cell Biol; 2005 Oct; 37(10):1974-84. PubMed ID: 16087388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies.
    Georgantas RW; Streicher K; Greenberg SA; Greenlees LM; Zhu W; Brohawn PZ; Higgs BW; Czapiga M; Morehouse CA; Amato A; Richman L; Jallal B; Yao Y; Ranade K
    Arthritis Rheumatol; 2014 Apr; 66(4):1022-33. PubMed ID: 24757153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dicer-mediated miRNA processing is not involved in controlling muscle mass during muscle atrophy.
    Oikawa S; Shin J; Akama T; Akimoto T
    Sci Rep; 2021 Sep; 11(1):19361. PubMed ID: 34588544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy.
    Hitachi K; Honda M; Tsuchida K
    Cells; 2022 Jul; 11(15):. PubMed ID: 35892588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms regulating skeletal muscle growth and atrophy.
    Schiaffino S; Dyar KA; Ciciliot S; Blaauw B; Sandri M
    FEBS J; 2013 Sep; 280(17):4294-314. PubMed ID: 23517348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.