BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26718581)

  • 1. Molecular Mechanisms Underlying Pituitary Pathogenesis.
    Sapochnik M; Nieto LE; Fuertes M; Arzt E
    Biochem Genet; 2016 Apr; 54(2):107-19. PubMed ID: 26718581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of genetic and epigenetic changes in pituitary tumorigenesis.
    Fukuoka H; Takahashi Y
    Neurol Med Chir (Tokyo); 2014; 54(12):943-57. PubMed ID: 25446387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland.
    Vennekens A; Laporte E; Hermans F; Cox B; Modave E; Janiszewski A; Nys C; Kobayashi H; Malengier-Devlies B; Chappell J; Matthys P; Garcia MI; Pasque V; Lambrechts D; Vankelecom H
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms.
    Srirangam Nadhamuni V; Korbonits M
    Endocr Rev; 2020 Dec; 41(6):821-46. PubMed ID: 32201880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autocrine IL-6 mediates pituitary tumor senescence.
    Sapochnik M; Haedo MR; Fuertes M; Ajler P; Carrizo G; Cervio A; Sevlever G; Stalla GK; Arzt E
    Oncotarget; 2017 Jan; 8(3):4690-4702. PubMed ID: 27902467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary.
    Lopes MBS
    Acta Neuropathol; 2017 Oct; 134(4):521-535. PubMed ID: 28821944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Genetic Causes of Pituitary Adenomas.
    Caimari F; Korbonits M
    Clin Cancer Res; 2016 Oct; 22(20):5030-5042. PubMed ID: 27742789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas.
    Mete O; Gomez-Hernandez K; Kucharczyk W; Ridout R; Zadeh G; Gentili F; Ezzat S; Asa SL
    Mod Pathol; 2016 Feb; 29(2):131-42. PubMed ID: 26743473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis and Treatment of Pituitary Adenomas: A Review.
    Molitch ME
    JAMA; 2017 Feb; 317(5):516-524. PubMed ID: 28170483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architects of Pituitary Tumour Growth.
    Sabatino ME; Grondona E; De Paul AL
    Front Endocrinol (Lausanne); 2022; 13():924942. PubMed ID: 35837315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of tumor-specific DNA methylation markers in the blood of patients with pituitary neuroendocrine tumors.
    Herrgott GA; Asmaro KP; Wells M; Sabedot TS; Malta TM; Mosella MS; Nelson K; Scarpace L; Barnholtz-Sloan JS; Sloan AE; Selman WR; deCarvalho AC; Poisson LM; Mukherjee A; Robin AM; Lee IY; Snyder J; Walbert T; Rosenblum M; Mikkelsen T; Bhan A; Craig J; Kalkanis S; Rock J; Noushmehr H; Castro AV
    Neuro Oncol; 2022 Jul; 24(7):1126-1139. PubMed ID: 35212383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential biomarkers of miRNA in non-functional pituitary adenomas.
    Zhang Q; Wang Y; Zhou Y; Zhang Q; Xu C
    World J Surg Oncol; 2021 Sep; 19(1):270. PubMed ID: 34503538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in DNA 5-Hydroxymethylcytosine Levels and the Underlying Mechanism in Non-functioning Pituitary Adenomas.
    Xu Y; Niu Y; Deng K; Pan H; Feng F; Gong F; Tong WM; Chen S; Lu L; Wang R; You H; Yao Y; Zhu H
    Front Endocrinol (Lausanne); 2020; 11():361. PubMed ID: 32774324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contemporary Management of Clinically Non-functioning Pituitary Adenomas: A Clinical Review.
    AlMalki MH; Ahmad MM; Brema I; AlDahmani KM; Pervez N; Al-Dandan S; AlObaid A; Beshyah SA
    Clin Med Insights Endocrinol Diabetes; 2020; 13():1179551420932921. PubMed ID: 32636692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lineage-dependent role of miR-410-3p as oncomiR in gonadotroph and corticotroph pituitary adenomas or tumor suppressor miR in somatotroph adenomas via MAPK, PTEN/AKT, and STAT3 signaling pathways.
    Grzywa TM; Klicka K; Rak B; Mehlich D; Garbicz F; Zieliński G; Maksymowicz M; Sajjad E; Włodarski PK
    Endocrine; 2019 Sep; 65(3):646-655. PubMed ID: 31165412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-186 targets SKP2 to induce p27
    He Z; Chen L; Wang Q; Yin C; Hu J; Hu X; Fei F; Tang J
    Korean J Physiol Pharmacol; 2019 May; 23(3):171-179. PubMed ID: 31080348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lifespan quantitative trait locus gene
    Brown A; Schuetz D; Han Y; Daria D; Nattamai KJ; Eiwen K; Sakk V; Pospiech J; Saller T; van Zant G; Wagner W; Geiger H
    Haematologica; 2020; 105(2):317-324. PubMed ID: 31073078
    [No Abstract]   [Full Text] [Related]  

  • 18. Hormonal aggressiveness according to the expression of cellular markers in corticotroph adenomas.
    Lim JS; Lee MK; Choi E; Hong N; Il Jee S; Kim SH; Lee EJ
    Endocrine; 2019 Apr; 64(1):147-156. PubMed ID: 30474823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytokines in Endocrine Dysfunction of Plasma Cell Disorders.
    Feigerlová E; Battaglia-Hsu SF
    Mediators Inflamm; 2017; 2017():7586174. PubMed ID: 28740334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic background of acromegaly.
    Gadelha MR; Kasuki L; Korbonits M
    Pituitary; 2017 Feb; 20(1):10-21. PubMed ID: 28161730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.