BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 26718944)

  • 1. Food productivity trend analysis of Raichur district for the management of agricultural drought.
    Swathandran S; Aslam MA
    Environ Monit Assess; 2016 Jan; 188(1):63. PubMed ID: 26718944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the role of SWIR band in detecting agricultural crop stress: a case study of Raichur district, Karnataka, India.
    Swathandran S; Aslam MAM
    Environ Monit Assess; 2019 Jun; 191(7):442. PubMed ID: 31203445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Strategies for Coping with Rainfall Variability: Seasonal Adjustments in Cropped Area in the Ganges Basin.
    Siderius C; Biemans H; van Walsum PE; van Ierland EC; Kabat P; Hellegers PJ
    PLoS One; 2016; 11(3):e0149397. PubMed ID: 26934389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India.
    Murthy CS; Yadav M; Mohammed Ahamed J; Laxman B; Prawasi R; Sesha Sai MV; Hooda RS
    Environ Monit Assess; 2015 Mar; 187(3):140. PubMed ID: 25716524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Characteristics of seasonal drought and its adaptation in southern China under the background of global climate change. VI. Optimized layout of cropping system for preventing and avoiding drought disaster].
    Sui Y; Huang WH; Yang XG; Li MS
    Ying Yong Sheng Tai Xue Bao; 2013 Nov; 24(11):3192-8. PubMed ID: 24564149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India.
    Mandal S; Choudhury BU; Satpati LN
    Int J Biometeorol; 2015 Dec; 59(12):1891-903. PubMed ID: 25903760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India.
    Singh RJ; Meena RL; Sharma NK; Kumar S; Kumar K; Kumar D
    Environ Monit Assess; 2016 Feb; 188(2):79. PubMed ID: 26739009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of Drought on Maize and Soybean Production in Northeast China During the Past Five Decades.
    Wang C; Linderholm HW; Song Y; Wang F; Liu Y; Tian J; Xu J; Song Y; Ren G
    Int J Environ Res Public Health; 2020 Apr; 17(7):. PubMed ID: 32260284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Changes of China agricultural climate resources under the background of climate change. VII. Change characteristics of agricultural climate resources in arid and semi-arid region of Tibet Plateau].
    Xu HJ; Yang XG; Wang WF; Xu C
    Ying Yong Sheng Tai Xue Bao; 2011 Jul; 22(7):1817-24. PubMed ID: 22007460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated crop model and GIS decision support system for assisting agronomic decision making under climate change.
    Kadiyala MD; Nedumaran S; Singh P; S C; Irshad MA; Bantilan MC
    Sci Total Environ; 2015 Jul; 521-522():123-34. PubMed ID: 25829290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root proliferation adaptation strategy improved maize productivity in the US Great Plains: Insights from crop simulation model under future climate change.
    Onyekwelu I; Sharda V
    Sci Total Environ; 2024 Jun; 927():172205. PubMed ID: 38599397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in agricultural land use and its consequences on crop productivity, diversity, and food availability in an agriculturally developed state of India.
    Sharma J; Singh O
    Environ Monit Assess; 2023 May; 195(6):747. PubMed ID: 37243796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forages and Pastures Symposium: development of and field experience with drought-tolerant maize.
    Soderlund S; Owens FN; Fagan C
    J Anim Sci; 2014 Jul; 92(7):2823-31. PubMed ID: 24496836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating US agriculture in a modern Dust Bowl drought.
    Glotter M; Elliott J
    Nat Plants; 2016 Dec; 3():16193. PubMed ID: 27941818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.
    Lal B; Gautam P; Panda BB; Raja R; Singh T; Tripathi R; Shahid M; Nayak AK
    PLoS One; 2017; 12(4):e0175709. PubMed ID: 28437487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate-adaptive crop distribution can feed food demand, improve water scarcity, and reduce greenhouse gas emissions.
    Su Z; Zhao J; Zhuang M; Liu Z; Zhao C; Pullens JWM; Liu K; Harrison MT; Yang X
    Sci Total Environ; 2024 Sep; 944():173819. PubMed ID: 38857807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.
    Mondal P; Jain M; DeFries RS; Galford GL; Small C
    J Environ Manage; 2015 Jan; 148():21-30. PubMed ID: 24680541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.