These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26719070)

  • 21. High efficiency inactivation of microalgae in ballast water by a new proposed dual-wave UV-photocatalysis system (UVA/UVC-TiO
    Lu Z; Zhang K; Liu X; Shi Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7785-7792. PubMed ID: 30673945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The regrowth of phytoplankton cultures after UV disinfection.
    Martínez LF; Mahamud MM; Lavín AG; Bueno JL
    Mar Pollut Bull; 2013 Feb; 67(1-2):152-7. PubMed ID: 23200304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water.
    Sholtes KA; Lowe K; Walters GW; Sobsey MD; Linden KG; Casanova LM
    Environ Technol; 2016 Sep; 37(17):2183-8. PubMed ID: 26888599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of salinity on medium- and low-pressure UV disinfection of Vibrio cholerae.
    Chen PY; Chu XN; Liu L; Hu JY
    Water Sci Technol; 2018 Feb; 77(3-4):655-661. PubMed ID: 29431710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide.
    Cha HG; Seo MH; Lee HY; Lee JH; Lee DS; Shin K; Choi KH
    Mar Pollut Bull; 2015 Jun; 95(1):315-23. PubMed ID: 25841887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different approaches and limitations for testing phytoplankton viability in natural assemblies and treated ballast water.
    Castro MCT; Veldhuis MJW; Fileman TW; Hall-Spencer JM
    Mar Pollut Bull; 2018 Dec; 137():172-179. PubMed ID: 30503423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.
    Hijnen WA; Beerendonk EF; Medema GJ
    Water Res; 2006 Jan; 40(1):3-22. PubMed ID: 16386286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultraviolet irradiation: An effective inactivation method of Aspergillus spp. in water for the control of waterborne nosocomial aspergillosis.
    Nourmoradi H; Nikaeen M; Stensvold CR; Mirhendi H
    Water Res; 2012 Nov; 46(18):5935-40. PubMed ID: 22985523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of three photosynthetic species smaller than ten microns as possible standard test organisms of ultraviolet-based ballast water treatment.
    Rivas-Zaballos I; Romero-Martínez L; Moreno-Garrido I; Acevedo-Merino A; Nebot E
    Mar Pollut Bull; 2021 Sep; 170():112643. PubMed ID: 34175694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inactivation of dinoflagellate Scripsiella trochoidea in synthetic ballast water by advanced oxidation processes.
    Yang Z; Jiang W; Zhang Y; Lim TM
    Environ Technol; 2015; 36(5-8):750-9. PubMed ID: 25182606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semicontinuous and batch ozonation combined with peroxymonosulfate for inactivation of microalgae in ballast water.
    Rivas-Zaballos I; Romero-Martínez L; Ibáñez-López ME; García-Morales JL; Acevedo-Merino A; Nebot E
    Sci Total Environ; 2022 Nov; 847():157559. PubMed ID: 35878852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of imaging-in-flow system (FlowCAM) for systematic ballast water management.
    Romero-Martínez L; van Slooten C; Nebot E; Acevedo-Merino A; Peperzak L
    Sci Total Environ; 2017 Dec; 603-604():550-561. PubMed ID: 28645053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of microalgae in ballast water with pulse intense light treatment.
    Feng D; Shi J; Sun D
    Mar Pollut Bull; 2015 Jan; 90(1-2):299-303. PubMed ID: 25440896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disinfection by-products in ballast water treatment: an evaluation of regulatory data.
    Werschkun B; Sommer Y; Banerji S
    Water Res; 2012 Oct; 46(16):4884-901. PubMed ID: 22818950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect and mechanism of a High Gradient Magnetic Separation (HGMS) and Ultraviolet (UV) composite process on the inactivation of microbes in ballast water.
    Ren Z; Zhang L; Shi Y; Leng X; Shao J
    Mar Pollut Bull; 2016 Jul; 108(1-2):180-5. PubMed ID: 27126180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying indicatively living phytoplankton cells in ballast water samples--recommendations for Port State Control.
    Gollasch S; David M; Francé J; Mozetič P
    Mar Pollut Bull; 2015 Dec; 101(2):768-75. PubMed ID: 26454632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial dynamics in acetate-enriched ballast water at different temperatures.
    Stehouwer PP; van Slooten C; Peperzak L
    Ecotoxicol Environ Saf; 2013 Oct; 96():93-8. PubMed ID: 23871568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regrowth in ship's ballast water tanks: Think again!
    Grob C; Pollet BG
    Mar Pollut Bull; 2016 Aug; 109(1):46-48. PubMed ID: 27184126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. UV spectrophotometry for monitoring the performance of a yeast-based deoxygenation process to treat ships' ballast water.
    Veilleux É; de Lafontaine Y; Thomas O
    Environ Monit Assess; 2016 Apr; 188(4):207. PubMed ID: 26944435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induced carotenoid accumulation in Dunaliella salina and Tetraselmis suecica by plant hormones and UV-C radiation.
    Ahmed F; Fanning K; Netzel M; Schenk PM
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9407-16. PubMed ID: 26201492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.