These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26719070)

  • 41. Inactivation of invasive marine species in the process of conveying ballast water using OH based on a strong ionization discharge.
    Bai M; Zheng Q; Tian Y; Zhang Z; Chen C; Cheng C; Meng X
    Water Res; 2016 Jun; 96():217-24. PubMed ID: 27058879
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inactivation of Amphidinium sp. in ballast waters using UV/Ag-TiO2+O3 advanced oxidation treatment.
    Wu D; You H; Zhang R; Chen C; Lee DJ
    Bioresour Technol; 2011 Nov; 102(21):9838-42. PubMed ID: 21890347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shipboard testing of the efficacy of SeaKleen as a ballast water treatment to eliminate non-indigenous species aboard a working tanker in Pacific waters.
    Wright DA; Dawson R; Caceres V; Orano-Dawson CE; Kananen GE; Cutler SJ; Cutler HG
    Environ Technol; 2009 Aug; 30(9):893-910. PubMed ID: 19803328
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management.
    Hess-Erga OK; Moreno-Andrés J; Enger Ø; Vadstein O
    Sci Total Environ; 2019 Mar; 657():704-716. PubMed ID: 30677936
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.
    Lyon BA; Dotson AD; Linden KG; Weinberg HS
    Water Res; 2012 Oct; 46(15):4653-64. PubMed ID: 22763290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Biological Basis for Ballast Water Performance Standards: "Viable/Non-Viable" or "Live/Dead"?
    Blatchley Iii ER; Cullen JJ; Petri B; Bircher K; Welschmeyer N
    Environ Sci Technol; 2018 Aug; 52(15):8075-8086. PubMed ID: 29927584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Abiotic and biological differences in ballast water uptake and discharge samples.
    Gollasch S; David M
    Mar Pollut Bull; 2021 Mar; 164():112046. PubMed ID: 33524834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inactivation of Scrippsiella trochoidea cysts by different physical and chemical methods: Application to the treatment of ballast water.
    Wang Z; Liang W; Guo X; Liu L
    Mar Pollut Bull; 2018 Jan; 126():150-158. PubMed ID: 29421082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of UV irradiation on human-derived Giardia lamblia cysts.
    Campbell AT; Wallis P
    Water Res; 2002 Feb; 36(4):963-9. PubMed ID: 11848367
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combining Ballast Water Exchange and Treatment To Maximize Prevention of Species Introductions to Freshwater Ecosystems.
    Briski E; Gollasch S; David M; Linley RD; Casas-Monroy O; Rajakaruna H; Bailey SA
    Environ Sci Technol; 2015 Aug; 49(16):9566-73. PubMed ID: 26171811
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ship board testing of a deoxygenation ballast water treatment.
    McCollin T; Quilez-Badia G; Josefsen KD; Gill ME; Mesbahi E; Frid CL
    Mar Pollut Bull; 2007 Aug; 54(8):1170-8. PubMed ID: 17574278
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of water suitable as the MEPC.174(58) G8 influent water for testing ballast water management systems.
    D'Agostino F; Del Core M; Cappello S; Mazzola S; Sprovieri M
    Environ Monit Assess; 2015 Oct; 187(10):642. PubMed ID: 26403705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultraviolet and ionizing radiation for microorganism inactivation.
    Taghipour F
    Water Res; 2004 Nov; 38(18):3940-8. PubMed ID: 15380984
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli.
    Li GQ; Wang WL; Huo ZY; Lu Y; Hu HY
    Water Res; 2017 Dec; 126():134-143. PubMed ID: 28941399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Risk assessment for ballast water management - Learning from the Adriatic Sea case study.
    David M; Gollasch S
    Mar Pollut Bull; 2019 Oct; 147():36-46. PubMed ID: 29454491
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flow cytometry and conventional enumeration of microorganisms in ships' ballast water and marine samples.
    Joachimsthal EL; Ivanov V; Tay JH; Tay ST
    Mar Pollut Bull; 2003 Mar; 46(3):308-13. PubMed ID: 12604064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Inactivation of bacteria and coliphages in surface water highly polluted by secondary effluent and purified by flocculation and filtration by means of UV irradiation at a pilot plant scale].
    Dizer H; Bartocha W; Seidel K; López Pila JM; Grohmann A
    Zentralbl Hyg Umweltmed; 1993 Sep; 194(5-6):490-507. PubMed ID: 8267835
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ozonation of the marine dinoflagellate alga Amphidinium sp.--implications for ballast water disinfection.
    Oemcke DJ; Hans van Leeuwen J
    Water Res; 2005 Dec; 39(20):5119-25. PubMed ID: 16289281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phytoplankton viability in ballast water from international commercial ships berthed at ports in Korea.
    Kang JH; Hyun BG; Shin K
    Mar Pollut Bull; 2010 Feb; 60(2):230-7. PubMed ID: 19857877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of immobilized TiO2 photocatalysis to improve the inactivation of Heterosigma akashiwo in ballast water by intense pulsed light.
    Feng D; Xu S; Liu G
    Chemosphere; 2015 Apr; 125():102-7. PubMed ID: 25522854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.