BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 26719580)

  • 21. β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3.
    Won YJ; Lu VB; Puhl HL; Ikeda SR
    J Neurosci; 2013 Dec; 33(49):19314-25. PubMed ID: 24305827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short-chain fatty acids, GPR41 and GPR43 ligands, inhibit TNF-α-induced MCP-1 expression by modulating p38 and JNK signaling pathways in human renal cortical epithelial cells.
    Kobayashi M; Mikami D; Kimura H; Kamiyama K; Morikawa Y; Yokoi S; Kasuno K; Takahashi N; Taniguchi T; Iwano M
    Biochem Biophys Res Commun; 2017 Apr; 486(2):499-505. PubMed ID: 28322790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of GPCR Structures for Modelling of Free Fatty Acid Receptors.
    Tikhonova IG
    Handb Exp Pharmacol; 2017; 236():57-77. PubMed ID: 27757764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free fatty acid receptor 3 is a key target of short chain fatty acid. What is the impact on the sympathetic nervous system?
    López Soto EJ; Gambino LO; Mustafá ER
    Channels (Austin); 2014; 8(3):169-71. PubMed ID: 24762451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-chain fatty acids regulate B cells differentiation via the FFA2 receptor to alleviate rheumatoid arthritis.
    Yao Y; Cai X; Zheng Y; Zhang M; Fei W; Sun D; Zhao M; Ye Y; Zheng C
    Br J Pharmacol; 2022 Sep; 179(17):4315-4329. PubMed ID: 35393660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-chain fatty acids increase expression and secretion of stromal cell-derived factor-1 in mouse and human pre-adipocytes.
    Vangaveti VN; Rush C; Thomas L; Rasalam RR; Malabu UH; McCoombe SG; Kennedy RL
    Hormones (Athens); 2014; 13(4):532-42. PubMed ID: 25402374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and characterization of the free fatty acid receptor 2 (FFA2) and a novel functional FFA2-like receptor (FFA2L) for short-chain fatty acids in pigs: evidence for the existence of a duplicated FFA2 gene (FFA2L) in some mammalian species.
    Zhang J; Cheng S; Wang Y; Yu X; Li J
    Domest Anim Endocrinol; 2014 Apr; 47():108-18.e1. PubMed ID: 24315753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor.
    Hudson BD; Due-Hansen ME; Christiansen E; Hansen AM; Mackenzie AE; Murdoch H; Pandey SK; Ward RJ; Marquez R; Tikhonova IG; Ulven T; Milligan G
    J Biol Chem; 2013 Jun; 288(24):17296-312. PubMed ID: 23589301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutively active GPR43 is crucial for proper leukocyte differentiation.
    Miyasato S; Iwata K; Mura R; Nakamura S; Yanagida K; Shindou H; Nagata Y; Kawahara M; Yamaguchi S; Aoki J; Inoue A; Nagamune T; Shimizu T; Nakamura M
    FASEB J; 2023 Jan; 37(1):e22676. PubMed ID: 36468834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2.
    Lee T; Schwandner R; Swaminath G; Weiszmann J; Cardozo M; Greenberg J; Jaeckel P; Ge H; Wang Y; Jiao X; Liu J; Kayser F; Tian H; Li Y
    Mol Pharmacol; 2008 Dec; 74(6):1599-609. PubMed ID: 18818303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FFA2-, but not FFA3-agonists inhibit GSIS of human pseudoislets: a comparative study with mouse islets and rat INS-1E cells.
    Lorza-Gil E; Kaiser G; Rexen Ulven E; König GM; Gerst F; Oquendo MB; Birkenfeld AL; Häring HU; Kostenis E; Ulven T; Ullrich S
    Sci Rep; 2020 Oct; 10(1):16497. PubMed ID: 33020504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases.
    Parada Venegas D; De la Fuente MK; Landskron G; González MJ; Quera R; Dijkstra G; Harmsen HJM; Faber KN; Hermoso MA
    Front Immunol; 2019; 10():277. PubMed ID: 30915065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release.
    Kaji I; Karaki S; Kuwahara A
    Digestion; 2014; 89(1):31-6. PubMed ID: 24458110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions.
    Tazoe H; Otomo Y; Kaji I; Tanaka R; Karaki SI; Kuwahara A
    J Physiol Pharmacol; 2008 Aug; 59 Suppl 2():251-62. PubMed ID: 18812643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions.
    Stoddart LA; Smith NJ; Milligan G
    Pharmacol Rev; 2008 Dec; 60(4):405-17. PubMed ID: 19047536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gut Microbiota: FFAR Reaching Effects on Islets.
    Priyadarshini M; Navarro G; Layden BT
    Endocrinology; 2018 Jun; 159(6):2495-2505. PubMed ID: 29846565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in gut nutrient chemosensing.
    Nguyen CA; Akiba Y; Kaunitz JD
    Curr Med Chem; 2012; 19(1):28-34. PubMed ID: 22300073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SCFA Receptors in Pancreatic β Cells: Novel Diabetes Targets?
    Priyadarshini M; Wicksteed B; Schiltz GE; Gilchrist A; Layden BT
    Trends Endocrinol Metab; 2016 Sep; 27(9):653-664. PubMed ID: 27091493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-chain fatty acids induce tissue plasminogen activator in airway epithelial cells via GPR41&43.
    Imoto Y; Kato A; Takabayashi T; Sakashita M; Norton JE; Suh LA; Carter RG; Weibman AR; Hulse KE; Stevens W; Harris KE; Peters AT; Grammer LC; Tan BK; Welch K; Conley DB; Kern RC; Fujieda S; Schleimer RP
    Clin Exp Allergy; 2018 May; 48(5):544-554. PubMed ID: 29431874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free Fatty Acid Receptors and Cancer: From Nutrition to Pharmacology.
    Hopkins MM; Meier KE
    Handb Exp Pharmacol; 2017; 236():233-251. PubMed ID: 27757756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.