These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26719675)
1. Study of bone-like hydroxyapatite/polyamino acid composite materials for their biological properties and effects on the reconstruction of long bone defects. Yan L; Jiang DM Drug Des Devel Ther; 2015; 9():6497-508. PubMed ID: 26719675 [TBL] [Abstract][Full Text] [Related]
2. Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model. Ruan SQ; Deng J; Yan L; Huang WL Biomed Pharmacother; 2018 Jan; 97():600-606. PubMed ID: 29101803 [TBL] [Abstract][Full Text] [Related]
3. Release characteristics of bone‑like hydroxyapatite/poly amino acid loaded with rifapentine microspheres in vivo. Liu Y; Zhu J; Jiang D Mol Med Rep; 2017 Aug; 16(2):1425-1430. PubMed ID: 28627673 [TBL] [Abstract][Full Text] [Related]
4. Multilayer Gelatin-Supported BMP-9 Coating Promotes Osteointegration and Neo-Bone Formation at the n-CDHA/PAA Composite Biomaterial-Bone Interface. Yang Q; Li Y; Wan R; Dong L; He A; Zuo D; Dai Z Front Biosci (Landmark Ed); 2024 Sep; 29(9):326. PubMed ID: 39344336 [TBL] [Abstract][Full Text] [Related]
5. Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres. Yan L; Jiang DM; Cao ZD; Wu J; Wang X; Wang ZL; Li YJ; Yi YF Drug Des Devel Ther; 2015; 9():3665-76. PubMed ID: 26213463 [TBL] [Abstract][Full Text] [Related]
6. Effect of bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres on bone and joint tuberculosis in vitro. Liu Y; Jiang D Cell Biol Int; 2017 Apr; 41(4):369-373. PubMed ID: 28102559 [TBL] [Abstract][Full Text] [Related]
7. In vitro and in vivo drug release and antibacterial properties of the novel vancomycin-loaded bone-like hydroxyapatite/poly amino acid scaffold. Cao Z; Jiang D; Yan L; Wu J Int J Nanomedicine; 2017; 12():1841-1851. PubMed ID: 28331309 [TBL] [Abstract][Full Text] [Related]
8. Biological evaluation of the modified nano-amorphous phosphate calcium doped with citrate/poly-amino acid composite as a potential candidate for bone repair and reconstruction. Wang X; Zhao D; Ren H; Yan Y; Li S J Mater Sci Mater Med; 2021 Jan; 32(1):16. PubMed ID: 33491099 [TBL] [Abstract][Full Text] [Related]
9. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials. Dai Z; Li Y; Lu W; Jiang D; Li H; Yan Y; Lv G; Yang A Int J Nanomedicine; 2015; 10():6303-16. PubMed ID: 26504382 [TBL] [Abstract][Full Text] [Related]
10. Enhancing osteoblast proliferation and bone regeneration by poly (amino acid)/selenium-doped hydroxyapatite. Wei X; Zhang Z; Wang L; Yan L; Yan Y; Wang C; Peng H; Fan X Biomed Mater; 2024 Apr; 19(3):. PubMed ID: 38537374 [TBL] [Abstract][Full Text] [Related]
11. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials. Jing L; Chen L; Peng H; Ji M; Xiong Y; Lv G J Biomater Sci Polym Ed; 2017 Dec; 28(18):2154-2170. PubMed ID: 28950766 [TBL] [Abstract][Full Text] [Related]
12. Biosafety of the Novel Vancomycin-loaded Bone-like Hydroxyapatite/Poly-amino Acid Bony Scaffold. Cao ZD; Jiang DM; Yan L; Wu J Chin Med J (Engl); 2016 Jan; 129(2):194-9. PubMed ID: 26830991 [TBL] [Abstract][Full Text] [Related]
13. D-amino acid inhibits biofilm but not new bone formation in an ovine model. Harmata AJ; Ma Y; Sanchez CJ; Zienkiewicz KJ; Elefteriou F; Wenke JC; Guelcher SA Clin Orthop Relat Res; 2015 Dec; 473(12):3951-61. PubMed ID: 26201421 [TBL] [Abstract][Full Text] [Related]
14. Repair of radius defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Hu YY; Zhang C; Lu R; Xu JQ; Li D Chin J Traumatol; 2003 Apr; 6(2):67-74. PubMed ID: 12659700 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo osteogenic activity of the novel vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) scaffold. Cao Z; Jiang D; Yan L; Wu J J Biomater Appl; 2016 May; 30(10):1566-77. PubMed ID: 26686585 [TBL] [Abstract][Full Text] [Related]
16. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects. Jing D; Tong S; Zhai M; Li X; Cai J; Wu Y; Shen G; Zhang X; Xu Q; Guo Z; Luo E Sci Rep; 2015 Nov; 5():17134. PubMed ID: 26601709 [TBL] [Abstract][Full Text] [Related]
17. Combined effects of porous hydroxyapatite and demineralized bone matrix on bone induction: in vitro and in vivo study using a nude rat model. Lee JH; Lee KM; Baek HR; Jang SJ; Lee JH; Ryu HS Biomed Mater; 2011 Feb; 6(1):015008. PubMed ID: 21205997 [TBL] [Abstract][Full Text] [Related]
18. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts. Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction. Parizi AM; Oryan A; Shafiei-Sarvestani Z; Bigham-Sadegh A J Orthop Traumatol; 2013 Dec; 14(4):259-68. PubMed ID: 23989855 [TBL] [Abstract][Full Text] [Related]
20. Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. González Ocampo JI; Machado de Paula MM; Bassous NJ; Lobo AO; Ossa Orozco CP; Webster TJ Acta Biomater; 2019 Jan; 83():425-434. PubMed ID: 30342285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]