These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 26719772)

  • 1. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome.
    Tak YG; Farnham PJ
    Epigenetics Chromatin; 2015; 8():57. PubMed ID: 26719772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endometrial vezatin and its association with endometriosis risk.
    Holdsworth-Carson SJ; Fung JN; Luong HT; Sapkota Y; Bowdler LM; Wallace L; Teh WT; Powell JE; Girling JE; Healey M; Montgomery GW; Rogers PA
    Hum Reprod; 2016 May; 31(5):999-1013. PubMed ID: 27005890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries.
    Li B; Ritchie MD
    Front Genet; 2021; 12():713230. PubMed ID: 34659337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural variants in linkage disequilibrium with GWAS-significant SNPs.
    Liang H; Sedillo JC; Schrodi SJ; Ikeda A
    Heliyon; 2024 Jun; 10(11):e32053. PubMed ID: 38882374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-genome single nucleotide polymorphisms affecting transcription factor binding and their role in pathogenesis.
    Antontseva EV; Degtyareva AO; Korbolina EE; Damarov IS; Merkulova TI
    Vavilovskii Zhurnal Genet Selektsii; 2023 Oct; 27(6):662-675. PubMed ID: 37965371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data.
    Gerasimova A; Chavez L; Li B; Seumois G; Greenbaum J; Rao A; Vijayanand P; Peters B
    PLoS One; 2013; 8(1):e54359. PubMed ID: 23382893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies.
    Xu Z; Taylor JA
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W600-5. PubMed ID: 19417063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of potential genetic causal variants for obesity-related traits using statistical fine mapping.
    Gong R; Greenbaum J; Lin X; Du Y; Su KJ; Gong Y; Shen J; Deng HW
    Mol Genet Genomics; 2023 Nov; 298(6):1309-1319. PubMed ID: 37498361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of non-coding genetic variation in histamine receptors using AnNCR-SNP.
    Rojano E; Ranea JA; Perkins JR
    Amino Acids; 2016 Oct; 48(10):2433-42. PubMed ID: 27270572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping.
    Liu F; Schmidt RH; Reif JC; Jiang Y
    G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies.
    Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle.
    Cai Z; Guldbrandtsen B; Lund MS; Sahana G
    Genet Sel Evol; 2019 May; 51(1):20. PubMed ID: 31077144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges and progress in interpretation of non-coding genetic variants associated with human disease.
    Zhu Y; Tazearslan C; Suh Y
    Exp Biol Med (Maywood); 2017 Jul; 242(13):1325-1334. PubMed ID: 28581336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying functional impact of non-coding variants with multi-task Bayesian neural network.
    Xu C; Liu Q; Zhou J; Xie M; Feng J; Jiang T
    Bioinformatics; 2020 Mar; 36(5):1397-1404. PubMed ID: 31693090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Into the Wild: GWAS Exploration of Non-coding RNAs.
    Giral H; Landmesser U; Kratzer A
    Front Cardiovasc Med; 2018; 5():181. PubMed ID: 30619888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional annotation of colon cancer risk SNPs.
    Yao L; Tak YG; Berman BP; Farnham PJ
    Nat Commun; 2014 Sep; 5():5114. PubMed ID: 25268989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D genome organization links non-coding disease-associated variants to genes.
    Orozco G; Schoenfelder S; Walker N; Eyre S; Fraser P
    Front Cell Dev Biol; 2022; 10():995388. PubMed ID: 36340032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS.
    Yige L; Dandan Z
    Yi Chuan; 2021 Mar; 43(3):203-214. PubMed ID: 33724205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Predisposition to the Mortality in Septic Shock Patients: From GWAS to the Identification of a Regulatory Variant Modulating the Activity of a
    Rosier F; Brisebarre A; Dupuis C; Baaklini S; Puthier D; Brun C; Pradel LC; Rihet P; Payen D
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond association: successes and challenges in linking non-coding genetic variation to functional consequences that modulate Alzheimer's disease risk.
    Novikova G; Andrews SJ; Renton AE; Marcora E
    Mol Neurodegener; 2021 Apr; 16(1):27. PubMed ID: 33882988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.